The application of multidimensional scaling methods to epidemiological data
This paper illustrates the use of multidimensional scaling methods (MDS) to examine space-time patterns in epidemic data. The paper begins by outlining the principles of MDS. The model is then formally specified and illustrated by application to two data sets. The first is partly a tutorial example....
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 1995-06, Vol.4 (2), p.102-123 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | 2 |
container_start_page | 102 |
container_title | Statistical methods in medical research |
container_volume | 4 |
creator | Cliff, AD Haggett, P. Smallman-Raynor, MR Stroup, DF Williamson, GD |
description | This paper illustrates the use of multidimensional scaling methods (MDS) to examine space-time patterns in epidemic data. The paper begins by outlining the principles of MDS. The model is then formally specified and illustrated by application to two data sets. The first is partly a tutorial example. It uses monthly reported measles morbidity data for the 31-year period from January 1960 to December 1990, collected for the 50 states of the USA, plus New York City and the District of Columbia. These data are used to explore the various ways in which MDS may be used to identify changing spatial patterns in geographically-coded data. In addition to their tutorial use, the data are also employed to search for any substantive changes in the geographical structure of measles epidemics in the USA that may have followed the introduction of mass vaccination in 1965. New England appears to have developed an epidemic profile distinct from the rest of the USA, and there is tentative evidence of an urban-rural split in epidemic characteristics. The second data set takes annual reported measles mortality data for New Zealand and the states of Australia from 1860 to 1949. MDS is used to show how the spatial relationships among these geographical units have changed over time in response to changes in the sizes of local susceptible populations. |
doi_str_mv | 10.1177/096228029500400202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77695048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_096228029500400202</sage_id><sourcerecordid>77695048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-39adf2ad2ea635120e1b8b282c1192c95f9b54d3a0d9f13834eb3bdcf87c9e403</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EKqXwB5CQPLGFXj9SxyOqeIlKLGWOHPumdeXUIU4G_j2pWrEgMV3pnu-c4SPklsEDY0rNQS84L4DrHEACcOBnZMqkUhkIIc_J9ABkB-KSXKW0AwAFUk_IROUF5wBT8r7eIjVtG7w1vY97GmvaDKH3zje4T-PHBJqsCX6_oQ322-gS7SPF1jtsfAxxMzYDdaY31-SiNiHhzenOyOfz03r5mq0-Xt6Wj6vM8lz0mdDG1dw4jmYhcsYBWVVUvOCWMc2tzmtd5dIJA07XTBRCYiUqZ-tCWY0SxIzcH3fbLn4NmPqy8cliCGaPcUilUovRiCxGkB9B28WUOqzLtvON6b5LBuXBYPnX4Fi6O60PVYPut3JSNubzY57MBstdHLpRUfpv8QfLl3k4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77695048</pqid></control><display><type>article</type><title>The application of multidimensional scaling methods to epidemiological data</title><source>MEDLINE</source><source>SAGE Complete</source><creator>Cliff, AD ; Haggett, P. ; Smallman-Raynor, MR ; Stroup, DF ; Williamson, GD</creator><creatorcontrib>Cliff, AD ; Haggett, P. ; Smallman-Raynor, MR ; Stroup, DF ; Williamson, GD</creatorcontrib><description>This paper illustrates the use of multidimensional scaling methods (MDS) to examine space-time patterns in epidemic data. The paper begins by outlining the principles of MDS. The model is then formally specified and illustrated by application to two data sets. The first is partly a tutorial example. It uses monthly reported measles morbidity data for the 31-year period from January 1960 to December 1990, collected for the 50 states of the USA, plus New York City and the District of Columbia. These data are used to explore the various ways in which MDS may be used to identify changing spatial patterns in geographically-coded data. In addition to their tutorial use, the data are also employed to search for any substantive changes in the geographical structure of measles epidemics in the USA that may have followed the introduction of mass vaccination in 1965. New England appears to have developed an epidemic profile distinct from the rest of the USA, and there is tentative evidence of an urban-rural split in epidemic characteristics. The second data set takes annual reported measles mortality data for New Zealand and the states of Australia from 1860 to 1949. MDS is used to show how the spatial relationships among these geographical units have changed over time in response to changes in the sizes of local susceptible populations.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/096228029500400202</identifier><identifier>PMID: 7582200</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><subject>Australia - epidemiology ; Cluster Analysis ; Cross-Sectional Studies ; Disease Outbreaks - statistics & numerical data ; Epidemiologic Methods ; Humans ; Incidence ; Mathematical Computing ; Measles - epidemiology ; Measles - mortality ; Models, Statistical ; New Zealand - epidemiology ; Population Surveillance ; Software ; Survival Analysis ; United States - epidemiology</subject><ispartof>Statistical methods in medical research, 1995-06, Vol.4 (2), p.102-123</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-39adf2ad2ea635120e1b8b282c1192c95f9b54d3a0d9f13834eb3bdcf87c9e403</citedby><cites>FETCH-LOGICAL-c253t-39adf2ad2ea635120e1b8b282c1192c95f9b54d3a0d9f13834eb3bdcf87c9e403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/096228029500400202$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/096228029500400202$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7582200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cliff, AD</creatorcontrib><creatorcontrib>Haggett, P.</creatorcontrib><creatorcontrib>Smallman-Raynor, MR</creatorcontrib><creatorcontrib>Stroup, DF</creatorcontrib><creatorcontrib>Williamson, GD</creatorcontrib><title>The application of multidimensional scaling methods to epidemiological data</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>This paper illustrates the use of multidimensional scaling methods (MDS) to examine space-time patterns in epidemic data. The paper begins by outlining the principles of MDS. The model is then formally specified and illustrated by application to two data sets. The first is partly a tutorial example. It uses monthly reported measles morbidity data for the 31-year period from January 1960 to December 1990, collected for the 50 states of the USA, plus New York City and the District of Columbia. These data are used to explore the various ways in which MDS may be used to identify changing spatial patterns in geographically-coded data. In addition to their tutorial use, the data are also employed to search for any substantive changes in the geographical structure of measles epidemics in the USA that may have followed the introduction of mass vaccination in 1965. New England appears to have developed an epidemic profile distinct from the rest of the USA, and there is tentative evidence of an urban-rural split in epidemic characteristics. The second data set takes annual reported measles mortality data for New Zealand and the states of Australia from 1860 to 1949. MDS is used to show how the spatial relationships among these geographical units have changed over time in response to changes in the sizes of local susceptible populations.</description><subject>Australia - epidemiology</subject><subject>Cluster Analysis</subject><subject>Cross-Sectional Studies</subject><subject>Disease Outbreaks - statistics & numerical data</subject><subject>Epidemiologic Methods</subject><subject>Humans</subject><subject>Incidence</subject><subject>Mathematical Computing</subject><subject>Measles - epidemiology</subject><subject>Measles - mortality</subject><subject>Models, Statistical</subject><subject>New Zealand - epidemiology</subject><subject>Population Surveillance</subject><subject>Software</subject><subject>Survival Analysis</subject><subject>United States - epidemiology</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAUhS0EKqXwB5CQPLGFXj9SxyOqeIlKLGWOHPumdeXUIU4G_j2pWrEgMV3pnu-c4SPklsEDY0rNQS84L4DrHEACcOBnZMqkUhkIIc_J9ABkB-KSXKW0AwAFUk_IROUF5wBT8r7eIjVtG7w1vY97GmvaDKH3zje4T-PHBJqsCX6_oQ322-gS7SPF1jtsfAxxMzYDdaY31-SiNiHhzenOyOfz03r5mq0-Xt6Wj6vM8lz0mdDG1dw4jmYhcsYBWVVUvOCWMc2tzmtd5dIJA07XTBRCYiUqZ-tCWY0SxIzcH3fbLn4NmPqy8cliCGaPcUilUovRiCxGkB9B28WUOqzLtvON6b5LBuXBYPnX4Fi6O60PVYPut3JSNubzY57MBstdHLpRUfpv8QfLl3k4</recordid><startdate>199506</startdate><enddate>199506</enddate><creator>Cliff, AD</creator><creator>Haggett, P.</creator><creator>Smallman-Raynor, MR</creator><creator>Stroup, DF</creator><creator>Williamson, GD</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199506</creationdate><title>The application of multidimensional scaling methods to epidemiological data</title><author>Cliff, AD ; Haggett, P. ; Smallman-Raynor, MR ; Stroup, DF ; Williamson, GD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-39adf2ad2ea635120e1b8b282c1192c95f9b54d3a0d9f13834eb3bdcf87c9e403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Australia - epidemiology</topic><topic>Cluster Analysis</topic><topic>Cross-Sectional Studies</topic><topic>Disease Outbreaks - statistics & numerical data</topic><topic>Epidemiologic Methods</topic><topic>Humans</topic><topic>Incidence</topic><topic>Mathematical Computing</topic><topic>Measles - epidemiology</topic><topic>Measles - mortality</topic><topic>Models, Statistical</topic><topic>New Zealand - epidemiology</topic><topic>Population Surveillance</topic><topic>Software</topic><topic>Survival Analysis</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cliff, AD</creatorcontrib><creatorcontrib>Haggett, P.</creatorcontrib><creatorcontrib>Smallman-Raynor, MR</creatorcontrib><creatorcontrib>Stroup, DF</creatorcontrib><creatorcontrib>Williamson, GD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cliff, AD</au><au>Haggett, P.</au><au>Smallman-Raynor, MR</au><au>Stroup, DF</au><au>Williamson, GD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of multidimensional scaling methods to epidemiological data</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>1995-06</date><risdate>1995</risdate><volume>4</volume><issue>2</issue><spage>102</spage><epage>123</epage><pages>102-123</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>This paper illustrates the use of multidimensional scaling methods (MDS) to examine space-time patterns in epidemic data. The paper begins by outlining the principles of MDS. The model is then formally specified and illustrated by application to two data sets. The first is partly a tutorial example. It uses monthly reported measles morbidity data for the 31-year period from January 1960 to December 1990, collected for the 50 states of the USA, plus New York City and the District of Columbia. These data are used to explore the various ways in which MDS may be used to identify changing spatial patterns in geographically-coded data. In addition to their tutorial use, the data are also employed to search for any substantive changes in the geographical structure of measles epidemics in the USA that may have followed the introduction of mass vaccination in 1965. New England appears to have developed an epidemic profile distinct from the rest of the USA, and there is tentative evidence of an urban-rural split in epidemic characteristics. The second data set takes annual reported measles mortality data for New Zealand and the states of Australia from 1860 to 1949. MDS is used to show how the spatial relationships among these geographical units have changed over time in response to changes in the sizes of local susceptible populations.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><pmid>7582200</pmid><doi>10.1177/096228029500400202</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 1995-06, Vol.4 (2), p.102-123 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_proquest_miscellaneous_77695048 |
source | MEDLINE; SAGE Complete |
subjects | Australia - epidemiology Cluster Analysis Cross-Sectional Studies Disease Outbreaks - statistics & numerical data Epidemiologic Methods Humans Incidence Mathematical Computing Measles - epidemiology Measles - mortality Models, Statistical New Zealand - epidemiology Population Surveillance Software Survival Analysis United States - epidemiology |
title | The application of multidimensional scaling methods to epidemiological data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20multidimensional%20scaling%20methods%20to%20epidemiological%20data&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Cliff,%20AD&rft.date=1995-06&rft.volume=4&rft.issue=2&rft.spage=102&rft.epage=123&rft.pages=102-123&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/096228029500400202&rft_dat=%3Cproquest_cross%3E77695048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77695048&rft_id=info:pmid/7582200&rft_sage_id=10.1177_096228029500400202&rfr_iscdi=true |