Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers

The initiation of transcription from the nitrogen-regulated promoter glnAp2 requires RNA polymerase containing σ 54, the transcriptional activator NR I, and the protein kinase NR II, responsible for the conversion of NR I to the active NR I-phosphate. NR I-phosphate does not increase the ability of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 1987-09, Vol.50 (7), p.1039-1046
Hauptverfasser: Ninfa, Alexander J., Reitzer, Lawrence J., Magasanik, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1046
container_issue 7
container_start_page 1039
container_title Cell
container_volume 50
creator Ninfa, Alexander J.
Reitzer, Lawrence J.
Magasanik, Boris
description The initiation of transcription from the nitrogen-regulated promoter glnAp2 requires RNA polymerase containing σ 54, the transcriptional activator NR I, and the protein kinase NR II, responsible for the conversion of NR I to the active NR I-phosphate. NR I-phosphate does not increase the ability of σ 54-containing RNA polymerase to bind to the promoter, but rather stimulates the conversion of an initial promoter:polymerase complex to the transcriptionally active open complex. The presence on the DNA template of high-affinity binding sites for NR I/R I-phosphate, normally located 130 and 100 bp upstream of the site of transcription initiation, results in a 4- to 5-fold lowering of the concentration of NR I required for the formation of the open complex. These high-affinity NR I binding sites facilitate open complex formation when they are moved to positions 700 bp further upstream or 950 bp downstream of glnAp2 on linear DNA templates.
doi_str_mv 10.1016/0092-8674(87)90170-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77661838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>009286748790170X</els_id><sourcerecordid>77661838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-e8eef06f279cad46d16df7466f45638565f80a0a912e5fc530e885099d8ee1773</originalsourceid><addsrcrecordid>eNqFkU9rFTEUxYNY6mv1GyhkIVIXU5OZ_N0USqlaKHTTQnchL3NjIzPJmOQp_fbm9T3eUjcJ3Ps7l8M5CL2n5JwSKr4QovtOCcnOlPysCZWke3yFVpRo2TEq-9dodUDeoJNSfhJCFOf8GB0PA2FCkBX6cxNDDbaGFHHyuGYbi8theRnYiusT4LV1FXKwE_4xxculx0tOc2ojvH7GyyYHH2DE1-fYpSm0Z15ShFgLDgV768IUqq2NaDTEJxsd5PIWHXk7FXi3_0_Rw9fr-6vv3e3dt5ury9vOMaZrBwrAE-F7qZ0dmRipGL1s1j3jYlBccK-IJVbTHrh3fCCgFCdaj01IpRxO0afd3eb51wZKNXMoDqbJRkibYqQUgqpB_RekTHNOe9pAtgNdTqVk8GbJYbb52VBitsWYbepmm7pR0rwUYx6b7MP-_mY9w3gQ7Zto-4_7vS3OTr4V4UI5YJIprlTfsIsdBi203wGyKS5Ai3QMGVw1Ywr_9vEXPqmqvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14955121</pqid></control><display><type>article</type><title>Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ninfa, Alexander J. ; Reitzer, Lawrence J. ; Magasanik, Boris</creator><creatorcontrib>Ninfa, Alexander J. ; Reitzer, Lawrence J. ; Magasanik, Boris</creatorcontrib><description>The initiation of transcription from the nitrogen-regulated promoter glnAp2 requires RNA polymerase containing σ 54, the transcriptional activator NR I, and the protein kinase NR II, responsible for the conversion of NR I to the active NR I-phosphate. NR I-phosphate does not increase the ability of σ 54-containing RNA polymerase to bind to the promoter, but rather stimulates the conversion of an initial promoter:polymerase complex to the transcriptionally active open complex. The presence on the DNA template of high-affinity binding sites for NR I/R I-phosphate, normally located 130 and 100 bp upstream of the site of transcription initiation, results in a 4- to 5-fold lowering of the concentration of NR I required for the formation of the open complex. These high-affinity NR I binding sites facilitate open complex formation when they are moved to positions 700 bp further upstream or 950 bp downstream of glnAp2 on linear DNA templates.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/0092-8674(87)90170-X</identifier><identifier>PMID: 3304660</identifier><identifier>CODEN: CELLB5</identifier><language>eng</language><publisher>Cambridge, MA: Elsevier Inc</publisher><subject>Base Sequence ; Binding Sites ; Biological and medical sciences ; DNA, Bacterial - metabolism ; DNA, Superhelical - metabolism ; DNA-Binding Proteins - metabolism ; Enhancer Elements, Genetic ; Escherichia coli ; Escherichia coli - analysis ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Genes, Regulator ; Molecular and cellular biology ; Molecular genetics ; Promoter Regions, Genetic ; Protein Binding ; Protein Kinases - metabolism ; RNA Polymerase I - metabolism ; Sigma Factor - metabolism ; Transcription Factors - metabolism ; Transcription, Genetic ; Transcription. Transcription factor. Splicing. Rna processing</subject><ispartof>Cell, 1987-09, Vol.50 (7), p.1039-1046</ispartof><rights>1987</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-e8eef06f279cad46d16df7466f45638565f80a0a912e5fc530e885099d8ee1773</citedby><cites>FETCH-LOGICAL-c449t-e8eef06f279cad46d16df7466f45638565f80a0a912e5fc530e885099d8ee1773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/009286748790170X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7485882$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3304660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ninfa, Alexander J.</creatorcontrib><creatorcontrib>Reitzer, Lawrence J.</creatorcontrib><creatorcontrib>Magasanik, Boris</creatorcontrib><title>Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers</title><title>Cell</title><addtitle>Cell</addtitle><description>The initiation of transcription from the nitrogen-regulated promoter glnAp2 requires RNA polymerase containing σ 54, the transcriptional activator NR I, and the protein kinase NR II, responsible for the conversion of NR I to the active NR I-phosphate. NR I-phosphate does not increase the ability of σ 54-containing RNA polymerase to bind to the promoter, but rather stimulates the conversion of an initial promoter:polymerase complex to the transcriptionally active open complex. The presence on the DNA template of high-affinity binding sites for NR I/R I-phosphate, normally located 130 and 100 bp upstream of the site of transcription initiation, results in a 4- to 5-fold lowering of the concentration of NR I required for the formation of the open complex. These high-affinity NR I binding sites facilitate open complex formation when they are moved to positions 700 bp further upstream or 950 bp downstream of glnAp2 on linear DNA templates.</description><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA, Superhelical - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enhancer Elements, Genetic</subject><subject>Escherichia coli</subject><subject>Escherichia coli - analysis</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Regulator</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Protein Kinases - metabolism</subject><subject>RNA Polymerase I - metabolism</subject><subject>Sigma Factor - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9rFTEUxYNY6mv1GyhkIVIXU5OZ_N0USqlaKHTTQnchL3NjIzPJmOQp_fbm9T3eUjcJ3Ps7l8M5CL2n5JwSKr4QovtOCcnOlPysCZWke3yFVpRo2TEq-9dodUDeoJNSfhJCFOf8GB0PA2FCkBX6cxNDDbaGFHHyuGYbi8theRnYiusT4LV1FXKwE_4xxculx0tOc2ojvH7GyyYHH2DE1-fYpSm0Z15ShFgLDgV768IUqq2NaDTEJxsd5PIWHXk7FXi3_0_Rw9fr-6vv3e3dt5ury9vOMaZrBwrAE-F7qZ0dmRipGL1s1j3jYlBccK-IJVbTHrh3fCCgFCdaj01IpRxO0afd3eb51wZKNXMoDqbJRkibYqQUgqpB_RekTHNOe9pAtgNdTqVk8GbJYbb52VBitsWYbepmm7pR0rwUYx6b7MP-_mY9w3gQ7Zto-4_7vS3OTr4V4UI5YJIprlTfsIsdBi203wGyKS5Ai3QMGVw1Ywr_9vEXPqmqvg</recordid><startdate>19870925</startdate><enddate>19870925</enddate><creator>Ninfa, Alexander J.</creator><creator>Reitzer, Lawrence J.</creator><creator>Magasanik, Boris</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19870925</creationdate><title>Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers</title><author>Ninfa, Alexander J. ; Reitzer, Lawrence J. ; Magasanik, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-e8eef06f279cad46d16df7466f45638565f80a0a912e5fc530e885099d8ee1773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA, Superhelical - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enhancer Elements, Genetic</topic><topic>Escherichia coli</topic><topic>Escherichia coli - analysis</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Regulator</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Protein Kinases - metabolism</topic><topic>RNA Polymerase I - metabolism</topic><topic>Sigma Factor - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ninfa, Alexander J.</creatorcontrib><creatorcontrib>Reitzer, Lawrence J.</creatorcontrib><creatorcontrib>Magasanik, Boris</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ninfa, Alexander J.</au><au>Reitzer, Lawrence J.</au><au>Magasanik, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>1987-09-25</date><risdate>1987</risdate><volume>50</volume><issue>7</issue><spage>1039</spage><epage>1046</epage><pages>1039-1046</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><coden>CELLB5</coden><abstract>The initiation of transcription from the nitrogen-regulated promoter glnAp2 requires RNA polymerase containing σ 54, the transcriptional activator NR I, and the protein kinase NR II, responsible for the conversion of NR I to the active NR I-phosphate. NR I-phosphate does not increase the ability of σ 54-containing RNA polymerase to bind to the promoter, but rather stimulates the conversion of an initial promoter:polymerase complex to the transcriptionally active open complex. The presence on the DNA template of high-affinity binding sites for NR I/R I-phosphate, normally located 130 and 100 bp upstream of the site of transcription initiation, results in a 4- to 5-fold lowering of the concentration of NR I required for the formation of the open complex. These high-affinity NR I binding sites facilitate open complex formation when they are moved to positions 700 bp further upstream or 950 bp downstream of glnAp2 on linear DNA templates.</abstract><cop>Cambridge, MA</cop><pub>Elsevier Inc</pub><pmid>3304660</pmid><doi>10.1016/0092-8674(87)90170-X</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 1987-09, Vol.50 (7), p.1039-1046
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_77661838
source MEDLINE; Elsevier ScienceDirect Journals
subjects Base Sequence
Binding Sites
Biological and medical sciences
DNA, Bacterial - metabolism
DNA, Superhelical - metabolism
DNA-Binding Proteins - metabolism
Enhancer Elements, Genetic
Escherichia coli
Escherichia coli - analysis
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
Genes, Regulator
Molecular and cellular biology
Molecular genetics
Promoter Regions, Genetic
Protein Binding
Protein Kinases - metabolism
RNA Polymerase I - metabolism
Sigma Factor - metabolism
Transcription Factors - metabolism
Transcription, Genetic
Transcription. Transcription factor. Splicing. Rna processing
title Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initiation%20of%20transcription%20at%20the%20bacterial%20glnAp2%20promoter%20by%20purified%20E.%20coli%20components%20is%20facilitated%20by%20enhancers&rft.jtitle=Cell&rft.au=Ninfa,%20Alexander%20J.&rft.date=1987-09-25&rft.volume=50&rft.issue=7&rft.spage=1039&rft.epage=1046&rft.pages=1039-1046&rft.issn=0092-8674&rft.eissn=1097-4172&rft.coden=CELLB5&rft_id=info:doi/10.1016/0092-8674(87)90170-X&rft_dat=%3Cproquest_cross%3E77661838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14955121&rft_id=info:pmid/3304660&rft_els_id=009286748790170X&rfr_iscdi=true