Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice
We have shown experimentally in the previous paper that spontaneous epileptiform activity, as recorded by extracellular field potentials, propagates smoothly across the CA2-CA3 region of the convulsant-treated hippocampal slice of the guinea pig at velocities of about 0.1 m/s. In the present paper,...
Gespeichert in:
Veröffentlicht in: | Neuroscience 1987, Vol.21 (2), p.457-470 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 470 |
---|---|
container_issue | 2 |
container_start_page | 457 |
container_title | Neuroscience |
container_volume | 21 |
creator | Traub, R.D. Knowles, W.D. Miles, R. Wong, R.K.S. |
description | We have shown experimentally in the
previous paper that spontaneous epileptiform activity, as recorded by extracellular field potentials, propagates smoothly across the CA2-CA3 region of the convulsant-treated hippocampal slice of the guinea pig at velocities of about 0.1 m/s. In the present paper, we used computer simulations of either 500 or 1000 cell arrays of model neurons to examine possible mechanisms underlying this propagation.
We show that propagation of epileptiform field potentials can be explained plausibly by slow conduction along axons interconnecting CA2-CA3 neurons, provided that there are sufficiently many interconnections. This propagation can take place even if the interconnections occur randomly. The number of interconnections required decreases as the number of synchronously activated cells initiating a population burst increases. Axonal propagation at 0.1 m/s appears to be a plausible assumption, since conduction velocities along Schaffer collaterals have been experimentally estimated to be as slow as 0.2 m/s, and small recurrent collaterals are likely to conduct more slowly than the main axonal branches. If spontaneous synchronized population bursts are initiated by activity in four or fewer cells, then our model requires, for smooth field potential propagation, more interconnections than are believed to occur on the basis of dual intracellular recording. |
doi_str_mv | 10.1016/0306-4522(87)90135-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77619185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0306452287901357</els_id><sourcerecordid>14829175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-29b78ccafdc2d9ee5525224d415ee7bdc5d052927ab5b4385536c4257d7f2cbe3</originalsourceid><addsrcrecordid>eNqFkU-L1DAYxoMo6-zqN1DIQUQP1fydpJeFYXBVWPGi55Amb2ciaVOTdmFOfnXbnTJHzSWQ9_c85HkfhF5R8oESuv1IONlWQjL2Tqv3NaFcVuoJ2lCteKWkEE_R5oI8R9el_CLzkYJfoStOeC0I36A_35KHWHBq8XgE7CDGKdqMO3BH24fS4an3kOMp9Ac85DTYgx1D6hcBDCHCMIY25Q5bN4aHMJ5w6B-d9jtW7XccZzis-PJ6DMOQnO0GG3GJwcEL9Ky1scDL9b5BP-8-_dh_qe6_f_66391XTlI2VqxulHbOtt4xXwNIyeZUwgsqAVTjnfREspop28hGcC0l3zrBpPKqZa4BfoPenn3nDL8nKKPpQlnS2h7SVIxSW1pTLf8LUqFZTdUCijPociolQ2uGHDqbT4YSsxRklu2bZftGK_NYkFGz7PXqPzUd-ItobWSev1nntjgb22x7F8oF01wozeiM3Z6xuTx4CJBNcQF6Bz5kcKPxKfz7H38By92tLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14829175</pqid></control><display><type>article</type><title>Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Traub, R.D. ; Knowles, W.D. ; Miles, R. ; Wong, R.K.S.</creator><creatorcontrib>Traub, R.D. ; Knowles, W.D. ; Miles, R. ; Wong, R.K.S.</creatorcontrib><description>We have shown experimentally in the
previous paper that spontaneous epileptiform activity, as recorded by extracellular field potentials, propagates smoothly across the CA2-CA3 region of the convulsant-treated hippocampal slice of the guinea pig at velocities of about 0.1 m/s. In the present paper, we used computer simulations of either 500 or 1000 cell arrays of model neurons to examine possible mechanisms underlying this propagation.
We show that propagation of epileptiform field potentials can be explained plausibly by slow conduction along axons interconnecting CA2-CA3 neurons, provided that there are sufficiently many interconnections. This propagation can take place even if the interconnections occur randomly. The number of interconnections required decreases as the number of synchronously activated cells initiating a population burst increases. Axonal propagation at 0.1 m/s appears to be a plausible assumption, since conduction velocities along Schaffer collaterals have been experimentally estimated to be as slow as 0.2 m/s, and small recurrent collaterals are likely to conduct more slowly than the main axonal branches. If spontaneous synchronized population bursts are initiated by activity in four or fewer cells, then our model requires, for smooth field potential propagation, more interconnections than are believed to occur on the basis of dual intracellular recording.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/0306-4522(87)90135-7</identifier><identifier>PMID: 3039403</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Computer Simulation ; Electrophysiology ; Epilepsy - physiopathology ; Guinea Pigs ; Hippocampus - physiopathology ; In Vitro Techniques ; Medical sciences ; Models, Neurological ; Nervous system involvement in other diseases. Miscellaneous ; Neural Conduction ; Neurology ; Synapses - physiology ; Synaptic Transmission</subject><ispartof>Neuroscience, 1987, Vol.21 (2), p.457-470</ispartof><rights>1987 IBRO</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-29b78ccafdc2d9ee5525224d415ee7bdc5d052927ab5b4385536c4257d7f2cbe3</citedby><cites>FETCH-LOGICAL-c512t-29b78ccafdc2d9ee5525224d415ee7bdc5d052927ab5b4385536c4257d7f2cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0306452287901357$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8347821$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3039403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Traub, R.D.</creatorcontrib><creatorcontrib>Knowles, W.D.</creatorcontrib><creatorcontrib>Miles, R.</creatorcontrib><creatorcontrib>Wong, R.K.S.</creatorcontrib><title>Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>We have shown experimentally in the
previous paper that spontaneous epileptiform activity, as recorded by extracellular field potentials, propagates smoothly across the CA2-CA3 region of the convulsant-treated hippocampal slice of the guinea pig at velocities of about 0.1 m/s. In the present paper, we used computer simulations of either 500 or 1000 cell arrays of model neurons to examine possible mechanisms underlying this propagation.
We show that propagation of epileptiform field potentials can be explained plausibly by slow conduction along axons interconnecting CA2-CA3 neurons, provided that there are sufficiently many interconnections. This propagation can take place even if the interconnections occur randomly. The number of interconnections required decreases as the number of synchronously activated cells initiating a population burst increases. Axonal propagation at 0.1 m/s appears to be a plausible assumption, since conduction velocities along Schaffer collaterals have been experimentally estimated to be as slow as 0.2 m/s, and small recurrent collaterals are likely to conduct more slowly than the main axonal branches. If spontaneous synchronized population bursts are initiated by activity in four or fewer cells, then our model requires, for smooth field potential propagation, more interconnections than are believed to occur on the basis of dual intracellular recording.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Electrophysiology</subject><subject>Epilepsy - physiopathology</subject><subject>Guinea Pigs</subject><subject>Hippocampus - physiopathology</subject><subject>In Vitro Techniques</subject><subject>Medical sciences</subject><subject>Models, Neurological</subject><subject>Nervous system involvement in other diseases. Miscellaneous</subject><subject>Neural Conduction</subject><subject>Neurology</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU-L1DAYxoMo6-zqN1DIQUQP1fydpJeFYXBVWPGi55Amb2ciaVOTdmFOfnXbnTJHzSWQ9_c85HkfhF5R8oESuv1IONlWQjL2Tqv3NaFcVuoJ2lCteKWkEE_R5oI8R9el_CLzkYJfoStOeC0I36A_35KHWHBq8XgE7CDGKdqMO3BH24fS4an3kOMp9Ac85DTYgx1D6hcBDCHCMIY25Q5bN4aHMJ5w6B-d9jtW7XccZzis-PJ6DMOQnO0GG3GJwcEL9Ky1scDL9b5BP-8-_dh_qe6_f_66391XTlI2VqxulHbOtt4xXwNIyeZUwgsqAVTjnfREspop28hGcC0l3zrBpPKqZa4BfoPenn3nDL8nKKPpQlnS2h7SVIxSW1pTLf8LUqFZTdUCijPociolQ2uGHDqbT4YSsxRklu2bZftGK_NYkFGz7PXqPzUd-ItobWSev1nntjgb22x7F8oF01wozeiM3Z6xuTx4CJBNcQF6Bz5kcKPxKfz7H38By92tLA</recordid><startdate>1987</startdate><enddate>1987</enddate><creator>Traub, R.D.</creator><creator>Knowles, W.D.</creator><creator>Miles, R.</creator><creator>Wong, R.K.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>1987</creationdate><title>Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice</title><author>Traub, R.D. ; Knowles, W.D. ; Miles, R. ; Wong, R.K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-29b78ccafdc2d9ee5525224d415ee7bdc5d052927ab5b4385536c4257d7f2cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Electrophysiology</topic><topic>Epilepsy - physiopathology</topic><topic>Guinea Pigs</topic><topic>Hippocampus - physiopathology</topic><topic>In Vitro Techniques</topic><topic>Medical sciences</topic><topic>Models, Neurological</topic><topic>Nervous system involvement in other diseases. Miscellaneous</topic><topic>Neural Conduction</topic><topic>Neurology</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traub, R.D.</creatorcontrib><creatorcontrib>Knowles, W.D.</creatorcontrib><creatorcontrib>Miles, R.</creatorcontrib><creatorcontrib>Wong, R.K.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traub, R.D.</au><au>Knowles, W.D.</au><au>Miles, R.</au><au>Wong, R.K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>1987</date><risdate>1987</risdate><volume>21</volume><issue>2</issue><spage>457</spage><epage>470</epage><pages>457-470</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>We have shown experimentally in the
previous paper that spontaneous epileptiform activity, as recorded by extracellular field potentials, propagates smoothly across the CA2-CA3 region of the convulsant-treated hippocampal slice of the guinea pig at velocities of about 0.1 m/s. In the present paper, we used computer simulations of either 500 or 1000 cell arrays of model neurons to examine possible mechanisms underlying this propagation.
We show that propagation of epileptiform field potentials can be explained plausibly by slow conduction along axons interconnecting CA2-CA3 neurons, provided that there are sufficiently many interconnections. This propagation can take place even if the interconnections occur randomly. The number of interconnections required decreases as the number of synchronously activated cells initiating a population burst increases. Axonal propagation at 0.1 m/s appears to be a plausible assumption, since conduction velocities along Schaffer collaterals have been experimentally estimated to be as slow as 0.2 m/s, and small recurrent collaterals are likely to conduct more slowly than the main axonal branches. If spontaneous synchronized population bursts are initiated by activity in four or fewer cells, then our model requires, for smooth field potential propagation, more interconnections than are believed to occur on the basis of dual intracellular recording.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>3039403</pmid><doi>10.1016/0306-4522(87)90135-7</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4522 |
ispartof | Neuroscience, 1987, Vol.21 (2), p.457-470 |
issn | 0306-4522 1873-7544 |
language | eng |
recordid | cdi_proquest_miscellaneous_77619185 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Biological and medical sciences Computer Simulation Electrophysiology Epilepsy - physiopathology Guinea Pigs Hippocampus - physiopathology In Vitro Techniques Medical sciences Models, Neurological Nervous system involvement in other diseases. Miscellaneous Neural Conduction Neurology Synapses - physiology Synaptic Transmission |
title | Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20of%20the%20cellular%20mechanism%20underlying%20propagation%20of%20epileptiform%20activity%20in%20the%20CA2-CA3%20region%20of%20the%20hippocampal%20slice&rft.jtitle=Neuroscience&rft.au=Traub,%20R.D.&rft.date=1987&rft.volume=21&rft.issue=2&rft.spage=457&rft.epage=470&rft.pages=457-470&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/0306-4522(87)90135-7&rft_dat=%3Cproquest_cross%3E14829175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14829175&rft_id=info:pmid/3039403&rft_els_id=0306452287901357&rfr_iscdi=true |