Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice

We have shown experimentally in the previous paper that spontaneous epileptiform activity, as recorded by extracellular field potentials, propagates smoothly across the CA2-CA3 region of the convulsant-treated hippocampal slice of the guinea pig at velocities of about 0.1 m/s. In the present paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 1987, Vol.21 (2), p.457-470
Hauptverfasser: Traub, R.D., Knowles, W.D., Miles, R., Wong, R.K.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 2
container_start_page 457
container_title Neuroscience
container_volume 21
creator Traub, R.D.
Knowles, W.D.
Miles, R.
Wong, R.K.S.
description We have shown experimentally in the previous paper that spontaneous epileptiform activity, as recorded by extracellular field potentials, propagates smoothly across the CA2-CA3 region of the convulsant-treated hippocampal slice of the guinea pig at velocities of about 0.1 m/s. In the present paper, we used computer simulations of either 500 or 1000 cell arrays of model neurons to examine possible mechanisms underlying this propagation. We show that propagation of epileptiform field potentials can be explained plausibly by slow conduction along axons interconnecting CA2-CA3 neurons, provided that there are sufficiently many interconnections. This propagation can take place even if the interconnections occur randomly. The number of interconnections required decreases as the number of synchronously activated cells initiating a population burst increases. Axonal propagation at 0.1 m/s appears to be a plausible assumption, since conduction velocities along Schaffer collaterals have been experimentally estimated to be as slow as 0.2 m/s, and small recurrent collaterals are likely to conduct more slowly than the main axonal branches. If spontaneous synchronized population bursts are initiated by activity in four or fewer cells, then our model requires, for smooth field potential propagation, more interconnections than are believed to occur on the basis of dual intracellular recording.
doi_str_mv 10.1016/0306-4522(87)90135-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77619185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0306452287901357</els_id><sourcerecordid>14829175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-29b78ccafdc2d9ee5525224d415ee7bdc5d052927ab5b4385536c4257d7f2cbe3</originalsourceid><addsrcrecordid>eNqFkU-L1DAYxoMo6-zqN1DIQUQP1fydpJeFYXBVWPGi55Amb2ciaVOTdmFOfnXbnTJHzSWQ9_c85HkfhF5R8oESuv1IONlWQjL2Tqv3NaFcVuoJ2lCteKWkEE_R5oI8R9el_CLzkYJfoStOeC0I36A_35KHWHBq8XgE7CDGKdqMO3BH24fS4an3kOMp9Ac85DTYgx1D6hcBDCHCMIY25Q5bN4aHMJ5w6B-d9jtW7XccZzis-PJ6DMOQnO0GG3GJwcEL9Ky1scDL9b5BP-8-_dh_qe6_f_66391XTlI2VqxulHbOtt4xXwNIyeZUwgsqAVTjnfREspop28hGcC0l3zrBpPKqZa4BfoPenn3nDL8nKKPpQlnS2h7SVIxSW1pTLf8LUqFZTdUCijPociolQ2uGHDqbT4YSsxRklu2bZftGK_NYkFGz7PXqPzUd-ItobWSev1nntjgb22x7F8oF01wozeiM3Z6xuTx4CJBNcQF6Bz5kcKPxKfz7H38By92tLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14829175</pqid></control><display><type>article</type><title>Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Traub, R.D. ; Knowles, W.D. ; Miles, R. ; Wong, R.K.S.</creator><creatorcontrib>Traub, R.D. ; Knowles, W.D. ; Miles, R. ; Wong, R.K.S.</creatorcontrib><description>We have shown experimentally in the previous paper that spontaneous epileptiform activity, as recorded by extracellular field potentials, propagates smoothly across the CA2-CA3 region of the convulsant-treated hippocampal slice of the guinea pig at velocities of about 0.1 m/s. In the present paper, we used computer simulations of either 500 or 1000 cell arrays of model neurons to examine possible mechanisms underlying this propagation. We show that propagation of epileptiform field potentials can be explained plausibly by slow conduction along axons interconnecting CA2-CA3 neurons, provided that there are sufficiently many interconnections. This propagation can take place even if the interconnections occur randomly. The number of interconnections required decreases as the number of synchronously activated cells initiating a population burst increases. Axonal propagation at 0.1 m/s appears to be a plausible assumption, since conduction velocities along Schaffer collaterals have been experimentally estimated to be as slow as 0.2 m/s, and small recurrent collaterals are likely to conduct more slowly than the main axonal branches. If spontaneous synchronized population bursts are initiated by activity in four or fewer cells, then our model requires, for smooth field potential propagation, more interconnections than are believed to occur on the basis of dual intracellular recording.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/0306-4522(87)90135-7</identifier><identifier>PMID: 3039403</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Computer Simulation ; Electrophysiology ; Epilepsy - physiopathology ; Guinea Pigs ; Hippocampus - physiopathology ; In Vitro Techniques ; Medical sciences ; Models, Neurological ; Nervous system involvement in other diseases. Miscellaneous ; Neural Conduction ; Neurology ; Synapses - physiology ; Synaptic Transmission</subject><ispartof>Neuroscience, 1987, Vol.21 (2), p.457-470</ispartof><rights>1987 IBRO</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-29b78ccafdc2d9ee5525224d415ee7bdc5d052927ab5b4385536c4257d7f2cbe3</citedby><cites>FETCH-LOGICAL-c512t-29b78ccafdc2d9ee5525224d415ee7bdc5d052927ab5b4385536c4257d7f2cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0306452287901357$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8347821$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3039403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Traub, R.D.</creatorcontrib><creatorcontrib>Knowles, W.D.</creatorcontrib><creatorcontrib>Miles, R.</creatorcontrib><creatorcontrib>Wong, R.K.S.</creatorcontrib><title>Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>We have shown experimentally in the previous paper that spontaneous epileptiform activity, as recorded by extracellular field potentials, propagates smoothly across the CA2-CA3 region of the convulsant-treated hippocampal slice of the guinea pig at velocities of about 0.1 m/s. In the present paper, we used computer simulations of either 500 or 1000 cell arrays of model neurons to examine possible mechanisms underlying this propagation. We show that propagation of epileptiform field potentials can be explained plausibly by slow conduction along axons interconnecting CA2-CA3 neurons, provided that there are sufficiently many interconnections. This propagation can take place even if the interconnections occur randomly. The number of interconnections required decreases as the number of synchronously activated cells initiating a population burst increases. Axonal propagation at 0.1 m/s appears to be a plausible assumption, since conduction velocities along Schaffer collaterals have been experimentally estimated to be as slow as 0.2 m/s, and small recurrent collaterals are likely to conduct more slowly than the main axonal branches. If spontaneous synchronized population bursts are initiated by activity in four or fewer cells, then our model requires, for smooth field potential propagation, more interconnections than are believed to occur on the basis of dual intracellular recording.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Electrophysiology</subject><subject>Epilepsy - physiopathology</subject><subject>Guinea Pigs</subject><subject>Hippocampus - physiopathology</subject><subject>In Vitro Techniques</subject><subject>Medical sciences</subject><subject>Models, Neurological</subject><subject>Nervous system involvement in other diseases. Miscellaneous</subject><subject>Neural Conduction</subject><subject>Neurology</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU-L1DAYxoMo6-zqN1DIQUQP1fydpJeFYXBVWPGi55Amb2ciaVOTdmFOfnXbnTJHzSWQ9_c85HkfhF5R8oESuv1IONlWQjL2Tqv3NaFcVuoJ2lCteKWkEE_R5oI8R9el_CLzkYJfoStOeC0I36A_35KHWHBq8XgE7CDGKdqMO3BH24fS4an3kOMp9Ac85DTYgx1D6hcBDCHCMIY25Q5bN4aHMJ5w6B-d9jtW7XccZzis-PJ6DMOQnO0GG3GJwcEL9Ky1scDL9b5BP-8-_dh_qe6_f_66391XTlI2VqxulHbOtt4xXwNIyeZUwgsqAVTjnfREspop28hGcC0l3zrBpPKqZa4BfoPenn3nDL8nKKPpQlnS2h7SVIxSW1pTLf8LUqFZTdUCijPociolQ2uGHDqbT4YSsxRklu2bZftGK_NYkFGz7PXqPzUd-ItobWSev1nntjgb22x7F8oF01wozeiM3Z6xuTx4CJBNcQF6Bz5kcKPxKfz7H38By92tLA</recordid><startdate>1987</startdate><enddate>1987</enddate><creator>Traub, R.D.</creator><creator>Knowles, W.D.</creator><creator>Miles, R.</creator><creator>Wong, R.K.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>1987</creationdate><title>Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice</title><author>Traub, R.D. ; Knowles, W.D. ; Miles, R. ; Wong, R.K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-29b78ccafdc2d9ee5525224d415ee7bdc5d052927ab5b4385536c4257d7f2cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Electrophysiology</topic><topic>Epilepsy - physiopathology</topic><topic>Guinea Pigs</topic><topic>Hippocampus - physiopathology</topic><topic>In Vitro Techniques</topic><topic>Medical sciences</topic><topic>Models, Neurological</topic><topic>Nervous system involvement in other diseases. Miscellaneous</topic><topic>Neural Conduction</topic><topic>Neurology</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traub, R.D.</creatorcontrib><creatorcontrib>Knowles, W.D.</creatorcontrib><creatorcontrib>Miles, R.</creatorcontrib><creatorcontrib>Wong, R.K.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traub, R.D.</au><au>Knowles, W.D.</au><au>Miles, R.</au><au>Wong, R.K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>1987</date><risdate>1987</risdate><volume>21</volume><issue>2</issue><spage>457</spage><epage>470</epage><pages>457-470</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>We have shown experimentally in the previous paper that spontaneous epileptiform activity, as recorded by extracellular field potentials, propagates smoothly across the CA2-CA3 region of the convulsant-treated hippocampal slice of the guinea pig at velocities of about 0.1 m/s. In the present paper, we used computer simulations of either 500 or 1000 cell arrays of model neurons to examine possible mechanisms underlying this propagation. We show that propagation of epileptiform field potentials can be explained plausibly by slow conduction along axons interconnecting CA2-CA3 neurons, provided that there are sufficiently many interconnections. This propagation can take place even if the interconnections occur randomly. The number of interconnections required decreases as the number of synchronously activated cells initiating a population burst increases. Axonal propagation at 0.1 m/s appears to be a plausible assumption, since conduction velocities along Schaffer collaterals have been experimentally estimated to be as slow as 0.2 m/s, and small recurrent collaterals are likely to conduct more slowly than the main axonal branches. If spontaneous synchronized population bursts are initiated by activity in four or fewer cells, then our model requires, for smooth field potential propagation, more interconnections than are believed to occur on the basis of dual intracellular recording.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>3039403</pmid><doi>10.1016/0306-4522(87)90135-7</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 1987, Vol.21 (2), p.457-470
issn 0306-4522
1873-7544
language eng
recordid cdi_proquest_miscellaneous_77619185
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Biological and medical sciences
Computer Simulation
Electrophysiology
Epilepsy - physiopathology
Guinea Pigs
Hippocampus - physiopathology
In Vitro Techniques
Medical sciences
Models, Neurological
Nervous system involvement in other diseases. Miscellaneous
Neural Conduction
Neurology
Synapses - physiology
Synaptic Transmission
title Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20of%20the%20cellular%20mechanism%20underlying%20propagation%20of%20epileptiform%20activity%20in%20the%20CA2-CA3%20region%20of%20the%20hippocampal%20slice&rft.jtitle=Neuroscience&rft.au=Traub,%20R.D.&rft.date=1987&rft.volume=21&rft.issue=2&rft.spage=457&rft.epage=470&rft.pages=457-470&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/0306-4522(87)90135-7&rft_dat=%3Cproquest_cross%3E14829175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14829175&rft_id=info:pmid/3039403&rft_els_id=0306452287901357&rfr_iscdi=true