Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model
Protein kinase C (PKC) and the ATP-dependent K+ channel (KATP channel) have been implicated in the mechanism of ischemic preconditioning in animal models. This study investigated the role of KATP channels and PKC in preconditioning in human myocardium and whether KATP channels are activated via a PK...
Gespeichert in:
Veröffentlicht in: | Circulation research 1995-11, Vol.77 (5), p.1030-1035 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1035 |
---|---|
container_issue | 5 |
container_start_page | 1030 |
container_title | Circulation research |
container_volume | 77 |
creator | SPEECHLY-DICK, M. E GROVER, G. J YELLON, D. M |
description | Protein kinase C (PKC) and the ATP-dependent K+ channel (KATP channel) have been implicated in the mechanism of ischemic preconditioning in animal models. This study investigated the role of KATP channels and PKC in preconditioning in human myocardium and whether KATP channels are activated via a PKC-dependent pathway. Right atrial trabeculae were superfused with Tyrode's solution and paced at 1 Hz. After stabilization, muscles underwent one of nine different protocols, followed by simulated ischemia (SI) consisting of 90 minutes of hypoxic substrate-free superfusion paced at 3 Hz and then by 120 minutes of reperfusion. Preconditioning consisted of 3 minutes of SI and 7 minutes of reperfusion. The experimental end point was recovery of contractile function after SI, presented here as percentage recovery (%Rec) of baseline function. %Rec was significantly improved by preconditioning by the KATP channel opener cromakalim (CK), and by the PKC activator 1,2-dioctanoyl-sn-glycerol (DOG) compared with nonpreconditioned controls when these treatments were given before the SI insult (control group, 29.5 +/- 3.6%; preconditioned group, 63.5 +/- 5.4%, CK-treated group, 52.9 +/- 3.1%; and DOG-treated group, 48.0 +/- 3.5%; P < .01). The effects of CK could be blocked by the KATP channel blocker glibenclamide (%Rec, 17.8 +/- 3.5%). Preconditioning could be blocked by the PKC antagonist chelerythrine (%Rec, 24.1 +/- 5.0%) and the KATP blocker glibenclamide (%Rec, 24.8 +/- 3.1%). The effects of DOG could also be blocked by glibenclamide (%Rec, 23.1 +/- 2.3%). |
doi_str_mv | 10.1161/01.RES.77.5.1030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77569162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25817557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e01323cf42529183418a0d752f5676092434eef35e40452629a0e6d28b9a32df3</originalsourceid><addsrcrecordid>eNpdkctuFDEQRS0ECkNgzwbJQogN6sbPfmQXDeEhIoEgrFuOXWYc3PZgu0fi2_g53GTIglWpVKfq3tJF6CklLaUdfU1o--Xia9v3rWwp4eQe2lDJRCNkT--jDSFkbHrOyUP0KOcbQqjgbDxBJ72UgvJhg36_iZCxy3oHs9N4n0DHYFxxMbjwHbuAyw7wbplVqM0h-gNUKBaokx8uqAx4i1Uwf7Hzq8-NgT0EA6Hgj6-w3qkQwOMznMtiXFWKFleBkpQuzgO2S9CrFla2QMLZzYtXBcw_R2p1UKVVSU75tTm4kiKeowH_GD2wymd4cqyn6Nvbi6vt--by07sP2_PLRvOhLw0QyhnXVjDJRjpwQQdFTC-ZlV3fkZEJLgAslyCIkKxjoyLQGTZcj4ozY_kpenl7tz7-c4FcprnaA-9VgLjkqe9lN9KOVfD5f-BNXFKo3iZGmaBVa6gQuYV0ijknsNM-uVmlXxMl0xrqROhUQ61nJzmtodaVZ8e7y_UM5m7hmGKdvzjOVdbK26SCdvkOq1_LsaP8D2kLqtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212410928</pqid></control><display><type>article</type><title>Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Ovid Autoload</source><creator>SPEECHLY-DICK, M. E ; GROVER, G. J ; YELLON, D. M</creator><creatorcontrib>SPEECHLY-DICK, M. E ; GROVER, G. J ; YELLON, D. M</creatorcontrib><description>Protein kinase C (PKC) and the ATP-dependent K+ channel (KATP channel) have been implicated in the mechanism of ischemic preconditioning in animal models. This study investigated the role of KATP channels and PKC in preconditioning in human myocardium and whether KATP channels are activated via a PKC-dependent pathway. Right atrial trabeculae were superfused with Tyrode's solution and paced at 1 Hz. After stabilization, muscles underwent one of nine different protocols, followed by simulated ischemia (SI) consisting of 90 minutes of hypoxic substrate-free superfusion paced at 3 Hz and then by 120 minutes of reperfusion. Preconditioning consisted of 3 minutes of SI and 7 minutes of reperfusion. The experimental end point was recovery of contractile function after SI, presented here as percentage recovery (%Rec) of baseline function. %Rec was significantly improved by preconditioning by the KATP channel opener cromakalim (CK), and by the PKC activator 1,2-dioctanoyl-sn-glycerol (DOG) compared with nonpreconditioned controls when these treatments were given before the SI insult (control group, 29.5 +/- 3.6%; preconditioned group, 63.5 +/- 5.4%, CK-treated group, 52.9 +/- 3.1%; and DOG-treated group, 48.0 +/- 3.5%; P < .01). The effects of CK could be blocked by the KATP channel blocker glibenclamide (%Rec, 17.8 +/- 3.5%). Preconditioning could be blocked by the PKC antagonist chelerythrine (%Rec, 24.1 +/- 5.0%) and the KATP blocker glibenclamide (%Rec, 24.8 +/- 3.1%). The effects of DOG could also be blocked by glibenclamide (%Rec, 23.1 +/- 2.3%).</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/01.RES.77.5.1030</identifier><identifier>PMID: 7554138</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott</publisher><subject>Adenosine Triphosphate - metabolism ; Adult ; Aged ; Alkaloids ; Benzophenanthridines ; Benzopyrans - pharmacology ; Biological and medical sciences ; Cardiology. Vascular system ; Coronary heart disease ; Cromakalim ; Diglycerides - pharmacology ; Female ; Heart ; Heart Atria - physiopathology ; Humans ; In Vitro Techniques ; Male ; Medical sciences ; Middle Aged ; Myocardial Contraction ; Myocardial Ischemia - physiopathology ; Myocardial Reperfusion ; Phenanthridines - pharmacology ; Potassium Channels - drug effects ; Potassium Channels - metabolism ; Potassium Channels - physiology ; Protein Kinase C - antagonists & inhibitors ; Protein Kinase C - metabolism ; Protein Kinase C - physiology ; Pyrroles - pharmacology ; Random Allocation ; Time Factors</subject><ispartof>Circulation research, 1995-11, Vol.77 (5), p.1030-1035</ispartof><rights>1996 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Nov 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e01323cf42529183418a0d752f5676092434eef35e40452629a0e6d28b9a32df3</citedby><cites>FETCH-LOGICAL-c387t-e01323cf42529183418a0d752f5676092434eef35e40452629a0e6d28b9a32df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3674,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2915961$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7554138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SPEECHLY-DICK, M. E</creatorcontrib><creatorcontrib>GROVER, G. J</creatorcontrib><creatorcontrib>YELLON, D. M</creatorcontrib><title>Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Protein kinase C (PKC) and the ATP-dependent K+ channel (KATP channel) have been implicated in the mechanism of ischemic preconditioning in animal models. This study investigated the role of KATP channels and PKC in preconditioning in human myocardium and whether KATP channels are activated via a PKC-dependent pathway. Right atrial trabeculae were superfused with Tyrode's solution and paced at 1 Hz. After stabilization, muscles underwent one of nine different protocols, followed by simulated ischemia (SI) consisting of 90 minutes of hypoxic substrate-free superfusion paced at 3 Hz and then by 120 minutes of reperfusion. Preconditioning consisted of 3 minutes of SI and 7 minutes of reperfusion. The experimental end point was recovery of contractile function after SI, presented here as percentage recovery (%Rec) of baseline function. %Rec was significantly improved by preconditioning by the KATP channel opener cromakalim (CK), and by the PKC activator 1,2-dioctanoyl-sn-glycerol (DOG) compared with nonpreconditioned controls when these treatments were given before the SI insult (control group, 29.5 +/- 3.6%; preconditioned group, 63.5 +/- 5.4%, CK-treated group, 52.9 +/- 3.1%; and DOG-treated group, 48.0 +/- 3.5%; P < .01). The effects of CK could be blocked by the KATP channel blocker glibenclamide (%Rec, 17.8 +/- 3.5%). Preconditioning could be blocked by the PKC antagonist chelerythrine (%Rec, 24.1 +/- 5.0%) and the KATP blocker glibenclamide (%Rec, 24.8 +/- 3.1%). The effects of DOG could also be blocked by glibenclamide (%Rec, 23.1 +/- 2.3%).</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adult</subject><subject>Aged</subject><subject>Alkaloids</subject><subject>Benzophenanthridines</subject><subject>Benzopyrans - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Cardiology. Vascular system</subject><subject>Coronary heart disease</subject><subject>Cromakalim</subject><subject>Diglycerides - pharmacology</subject><subject>Female</subject><subject>Heart</subject><subject>Heart Atria - physiopathology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Myocardial Contraction</subject><subject>Myocardial Ischemia - physiopathology</subject><subject>Myocardial Reperfusion</subject><subject>Phenanthridines - pharmacology</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels - physiology</subject><subject>Protein Kinase C - antagonists & inhibitors</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Kinase C - physiology</subject><subject>Pyrroles - pharmacology</subject><subject>Random Allocation</subject><subject>Time Factors</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctuFDEQRS0ECkNgzwbJQogN6sbPfmQXDeEhIoEgrFuOXWYc3PZgu0fi2_g53GTIglWpVKfq3tJF6CklLaUdfU1o--Xia9v3rWwp4eQe2lDJRCNkT--jDSFkbHrOyUP0KOcbQqjgbDxBJ72UgvJhg36_iZCxy3oHs9N4n0DHYFxxMbjwHbuAyw7wbplVqM0h-gNUKBaokx8uqAx4i1Uwf7Hzq8-NgT0EA6Hgj6-w3qkQwOMznMtiXFWKFleBkpQuzgO2S9CrFla2QMLZzYtXBcw_R2p1UKVVSU75tTm4kiKeowH_GD2wymd4cqyn6Nvbi6vt--by07sP2_PLRvOhLw0QyhnXVjDJRjpwQQdFTC-ZlV3fkZEJLgAslyCIkKxjoyLQGTZcj4ozY_kpenl7tz7-c4FcprnaA-9VgLjkqe9lN9KOVfD5f-BNXFKo3iZGmaBVa6gQuYV0ijknsNM-uVmlXxMl0xrqROhUQ61nJzmtodaVZ8e7y_UM5m7hmGKdvzjOVdbK26SCdvkOq1_LsaP8D2kLqtY</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>SPEECHLY-DICK, M. E</creator><creator>GROVER, G. J</creator><creator>YELLON, D. M</creator><general>Lippincott</general><general>Lippincott Williams & Wilkins Ovid Technologies</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>19951101</creationdate><title>Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model</title><author>SPEECHLY-DICK, M. E ; GROVER, G. J ; YELLON, D. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e01323cf42529183418a0d752f5676092434eef35e40452629a0e6d28b9a32df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adult</topic><topic>Aged</topic><topic>Alkaloids</topic><topic>Benzophenanthridines</topic><topic>Benzopyrans - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Cardiology. Vascular system</topic><topic>Coronary heart disease</topic><topic>Cromakalim</topic><topic>Diglycerides - pharmacology</topic><topic>Female</topic><topic>Heart</topic><topic>Heart Atria - physiopathology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Myocardial Contraction</topic><topic>Myocardial Ischemia - physiopathology</topic><topic>Myocardial Reperfusion</topic><topic>Phenanthridines - pharmacology</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels - physiology</topic><topic>Protein Kinase C - antagonists & inhibitors</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Kinase C - physiology</topic><topic>Pyrroles - pharmacology</topic><topic>Random Allocation</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SPEECHLY-DICK, M. E</creatorcontrib><creatorcontrib>GROVER, G. J</creatorcontrib><creatorcontrib>YELLON, D. M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SPEECHLY-DICK, M. E</au><au>GROVER, G. J</au><au>YELLON, D. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>1995-11-01</date><risdate>1995</risdate><volume>77</volume><issue>5</issue><spage>1030</spage><epage>1035</epage><pages>1030-1035</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>Protein kinase C (PKC) and the ATP-dependent K+ channel (KATP channel) have been implicated in the mechanism of ischemic preconditioning in animal models. This study investigated the role of KATP channels and PKC in preconditioning in human myocardium and whether KATP channels are activated via a PKC-dependent pathway. Right atrial trabeculae were superfused with Tyrode's solution and paced at 1 Hz. After stabilization, muscles underwent one of nine different protocols, followed by simulated ischemia (SI) consisting of 90 minutes of hypoxic substrate-free superfusion paced at 3 Hz and then by 120 minutes of reperfusion. Preconditioning consisted of 3 minutes of SI and 7 minutes of reperfusion. The experimental end point was recovery of contractile function after SI, presented here as percentage recovery (%Rec) of baseline function. %Rec was significantly improved by preconditioning by the KATP channel opener cromakalim (CK), and by the PKC activator 1,2-dioctanoyl-sn-glycerol (DOG) compared with nonpreconditioned controls when these treatments were given before the SI insult (control group, 29.5 +/- 3.6%; preconditioned group, 63.5 +/- 5.4%, CK-treated group, 52.9 +/- 3.1%; and DOG-treated group, 48.0 +/- 3.5%; P < .01). The effects of CK could be blocked by the KATP channel blocker glibenclamide (%Rec, 17.8 +/- 3.5%). Preconditioning could be blocked by the PKC antagonist chelerythrine (%Rec, 24.1 +/- 5.0%) and the KATP blocker glibenclamide (%Rec, 24.8 +/- 3.1%). The effects of DOG could also be blocked by glibenclamide (%Rec, 23.1 +/- 2.3%).</abstract><cop>Hagerstown, MD</cop><pub>Lippincott</pub><pmid>7554138</pmid><doi>10.1161/01.RES.77.5.1030</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7330 |
ispartof | Circulation research, 1995-11, Vol.77 (5), p.1030-1035 |
issn | 0009-7330 1524-4571 |
language | eng |
recordid | cdi_proquest_miscellaneous_77569162 |
source | MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Ovid Autoload |
subjects | Adenosine Triphosphate - metabolism Adult Aged Alkaloids Benzophenanthridines Benzopyrans - pharmacology Biological and medical sciences Cardiology. Vascular system Coronary heart disease Cromakalim Diglycerides - pharmacology Female Heart Heart Atria - physiopathology Humans In Vitro Techniques Male Medical sciences Middle Aged Myocardial Contraction Myocardial Ischemia - physiopathology Myocardial Reperfusion Phenanthridines - pharmacology Potassium Channels - drug effects Potassium Channels - metabolism Potassium Channels - physiology Protein Kinase C - antagonists & inhibitors Protein Kinase C - metabolism Protein Kinase C - physiology Pyrroles - pharmacology Random Allocation Time Factors |
title | Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20ischemic%20preconditioning%20in%20the%20human%20involve%20protein%20kinase%20C%20and%20the%20ATP-dependent%20K+%20channel%20:%20studies%20of%20contractile%20function%20after%20simulated%20ischemia%20in%20an%20atrial%20in%20vitro%20model&rft.jtitle=Circulation%20research&rft.au=SPEECHLY-DICK,%20M.%20E&rft.date=1995-11-01&rft.volume=77&rft.issue=5&rft.spage=1030&rft.epage=1035&rft.pages=1030-1035&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/01.RES.77.5.1030&rft_dat=%3Cproquest_cross%3E25817557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212410928&rft_id=info:pmid/7554138&rfr_iscdi=true |