Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model

Protein kinase C (PKC) and the ATP-dependent K+ channel (KATP channel) have been implicated in the mechanism of ischemic preconditioning in animal models. This study investigated the role of KATP channels and PKC in preconditioning in human myocardium and whether KATP channels are activated via a PK...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 1995-11, Vol.77 (5), p.1030-1035
Hauptverfasser: SPEECHLY-DICK, M. E, GROVER, G. J, YELLON, D. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1035
container_issue 5
container_start_page 1030
container_title Circulation research
container_volume 77
creator SPEECHLY-DICK, M. E
GROVER, G. J
YELLON, D. M
description Protein kinase C (PKC) and the ATP-dependent K+ channel (KATP channel) have been implicated in the mechanism of ischemic preconditioning in animal models. This study investigated the role of KATP channels and PKC in preconditioning in human myocardium and whether KATP channels are activated via a PKC-dependent pathway. Right atrial trabeculae were superfused with Tyrode's solution and paced at 1 Hz. After stabilization, muscles underwent one of nine different protocols, followed by simulated ischemia (SI) consisting of 90 minutes of hypoxic substrate-free superfusion paced at 3 Hz and then by 120 minutes of reperfusion. Preconditioning consisted of 3 minutes of SI and 7 minutes of reperfusion. The experimental end point was recovery of contractile function after SI, presented here as percentage recovery (%Rec) of baseline function. %Rec was significantly improved by preconditioning by the KATP channel opener cromakalim (CK), and by the PKC activator 1,2-dioctanoyl-sn-glycerol (DOG) compared with nonpreconditioned controls when these treatments were given before the SI insult (control group, 29.5 +/- 3.6%; preconditioned group, 63.5 +/- 5.4%, CK-treated group, 52.9 +/- 3.1%; and DOG-treated group, 48.0 +/- 3.5%; P < .01). The effects of CK could be blocked by the KATP channel blocker glibenclamide (%Rec, 17.8 +/- 3.5%). Preconditioning could be blocked by the PKC antagonist chelerythrine (%Rec, 24.1 +/- 5.0%) and the KATP blocker glibenclamide (%Rec, 24.8 +/- 3.1%). The effects of DOG could also be blocked by glibenclamide (%Rec, 23.1 +/- 2.3%).
doi_str_mv 10.1161/01.RES.77.5.1030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77569162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25817557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e01323cf42529183418a0d752f5676092434eef35e40452629a0e6d28b9a32df3</originalsourceid><addsrcrecordid>eNpdkctuFDEQRS0ECkNgzwbJQogN6sbPfmQXDeEhIoEgrFuOXWYc3PZgu0fi2_g53GTIglWpVKfq3tJF6CklLaUdfU1o--Xia9v3rWwp4eQe2lDJRCNkT--jDSFkbHrOyUP0KOcbQqjgbDxBJ72UgvJhg36_iZCxy3oHs9N4n0DHYFxxMbjwHbuAyw7wbplVqM0h-gNUKBaokx8uqAx4i1Uwf7Hzq8-NgT0EA6Hgj6-w3qkQwOMznMtiXFWKFleBkpQuzgO2S9CrFla2QMLZzYtXBcw_R2p1UKVVSU75tTm4kiKeowH_GD2wymd4cqyn6Nvbi6vt--by07sP2_PLRvOhLw0QyhnXVjDJRjpwQQdFTC-ZlV3fkZEJLgAslyCIkKxjoyLQGTZcj4ozY_kpenl7tz7-c4FcprnaA-9VgLjkqe9lN9KOVfD5f-BNXFKo3iZGmaBVa6gQuYV0ijknsNM-uVmlXxMl0xrqROhUQ61nJzmtodaVZ8e7y_UM5m7hmGKdvzjOVdbK26SCdvkOq1_LsaP8D2kLqtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212410928</pqid></control><display><type>article</type><title>Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Ovid Autoload</source><creator>SPEECHLY-DICK, M. E ; GROVER, G. J ; YELLON, D. M</creator><creatorcontrib>SPEECHLY-DICK, M. E ; GROVER, G. J ; YELLON, D. M</creatorcontrib><description>Protein kinase C (PKC) and the ATP-dependent K+ channel (KATP channel) have been implicated in the mechanism of ischemic preconditioning in animal models. This study investigated the role of KATP channels and PKC in preconditioning in human myocardium and whether KATP channels are activated via a PKC-dependent pathway. Right atrial trabeculae were superfused with Tyrode's solution and paced at 1 Hz. After stabilization, muscles underwent one of nine different protocols, followed by simulated ischemia (SI) consisting of 90 minutes of hypoxic substrate-free superfusion paced at 3 Hz and then by 120 minutes of reperfusion. Preconditioning consisted of 3 minutes of SI and 7 minutes of reperfusion. The experimental end point was recovery of contractile function after SI, presented here as percentage recovery (%Rec) of baseline function. %Rec was significantly improved by preconditioning by the KATP channel opener cromakalim (CK), and by the PKC activator 1,2-dioctanoyl-sn-glycerol (DOG) compared with nonpreconditioned controls when these treatments were given before the SI insult (control group, 29.5 +/- 3.6%; preconditioned group, 63.5 +/- 5.4%, CK-treated group, 52.9 +/- 3.1%; and DOG-treated group, 48.0 +/- 3.5%; P &lt; .01). The effects of CK could be blocked by the KATP channel blocker glibenclamide (%Rec, 17.8 +/- 3.5%). Preconditioning could be blocked by the PKC antagonist chelerythrine (%Rec, 24.1 +/- 5.0%) and the KATP blocker glibenclamide (%Rec, 24.8 +/- 3.1%). The effects of DOG could also be blocked by glibenclamide (%Rec, 23.1 +/- 2.3%).</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/01.RES.77.5.1030</identifier><identifier>PMID: 7554138</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott</publisher><subject>Adenosine Triphosphate - metabolism ; Adult ; Aged ; Alkaloids ; Benzophenanthridines ; Benzopyrans - pharmacology ; Biological and medical sciences ; Cardiology. Vascular system ; Coronary heart disease ; Cromakalim ; Diglycerides - pharmacology ; Female ; Heart ; Heart Atria - physiopathology ; Humans ; In Vitro Techniques ; Male ; Medical sciences ; Middle Aged ; Myocardial Contraction ; Myocardial Ischemia - physiopathology ; Myocardial Reperfusion ; Phenanthridines - pharmacology ; Potassium Channels - drug effects ; Potassium Channels - metabolism ; Potassium Channels - physiology ; Protein Kinase C - antagonists &amp; inhibitors ; Protein Kinase C - metabolism ; Protein Kinase C - physiology ; Pyrroles - pharmacology ; Random Allocation ; Time Factors</subject><ispartof>Circulation research, 1995-11, Vol.77 (5), p.1030-1035</ispartof><rights>1996 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Nov 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e01323cf42529183418a0d752f5676092434eef35e40452629a0e6d28b9a32df3</citedby><cites>FETCH-LOGICAL-c387t-e01323cf42529183418a0d752f5676092434eef35e40452629a0e6d28b9a32df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3674,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2915961$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7554138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SPEECHLY-DICK, M. E</creatorcontrib><creatorcontrib>GROVER, G. J</creatorcontrib><creatorcontrib>YELLON, D. M</creatorcontrib><title>Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Protein kinase C (PKC) and the ATP-dependent K+ channel (KATP channel) have been implicated in the mechanism of ischemic preconditioning in animal models. This study investigated the role of KATP channels and PKC in preconditioning in human myocardium and whether KATP channels are activated via a PKC-dependent pathway. Right atrial trabeculae were superfused with Tyrode's solution and paced at 1 Hz. After stabilization, muscles underwent one of nine different protocols, followed by simulated ischemia (SI) consisting of 90 minutes of hypoxic substrate-free superfusion paced at 3 Hz and then by 120 minutes of reperfusion. Preconditioning consisted of 3 minutes of SI and 7 minutes of reperfusion. The experimental end point was recovery of contractile function after SI, presented here as percentage recovery (%Rec) of baseline function. %Rec was significantly improved by preconditioning by the KATP channel opener cromakalim (CK), and by the PKC activator 1,2-dioctanoyl-sn-glycerol (DOG) compared with nonpreconditioned controls when these treatments were given before the SI insult (control group, 29.5 +/- 3.6%; preconditioned group, 63.5 +/- 5.4%, CK-treated group, 52.9 +/- 3.1%; and DOG-treated group, 48.0 +/- 3.5%; P &lt; .01). The effects of CK could be blocked by the KATP channel blocker glibenclamide (%Rec, 17.8 +/- 3.5%). Preconditioning could be blocked by the PKC antagonist chelerythrine (%Rec, 24.1 +/- 5.0%) and the KATP blocker glibenclamide (%Rec, 24.8 +/- 3.1%). The effects of DOG could also be blocked by glibenclamide (%Rec, 23.1 +/- 2.3%).</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adult</subject><subject>Aged</subject><subject>Alkaloids</subject><subject>Benzophenanthridines</subject><subject>Benzopyrans - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Cardiology. Vascular system</subject><subject>Coronary heart disease</subject><subject>Cromakalim</subject><subject>Diglycerides - pharmacology</subject><subject>Female</subject><subject>Heart</subject><subject>Heart Atria - physiopathology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Myocardial Contraction</subject><subject>Myocardial Ischemia - physiopathology</subject><subject>Myocardial Reperfusion</subject><subject>Phenanthridines - pharmacology</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels - physiology</subject><subject>Protein Kinase C - antagonists &amp; inhibitors</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Kinase C - physiology</subject><subject>Pyrroles - pharmacology</subject><subject>Random Allocation</subject><subject>Time Factors</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctuFDEQRS0ECkNgzwbJQogN6sbPfmQXDeEhIoEgrFuOXWYc3PZgu0fi2_g53GTIglWpVKfq3tJF6CklLaUdfU1o--Xia9v3rWwp4eQe2lDJRCNkT--jDSFkbHrOyUP0KOcbQqjgbDxBJ72UgvJhg36_iZCxy3oHs9N4n0DHYFxxMbjwHbuAyw7wbplVqM0h-gNUKBaokx8uqAx4i1Uwf7Hzq8-NgT0EA6Hgj6-w3qkQwOMznMtiXFWKFleBkpQuzgO2S9CrFla2QMLZzYtXBcw_R2p1UKVVSU75tTm4kiKeowH_GD2wymd4cqyn6Nvbi6vt--by07sP2_PLRvOhLw0QyhnXVjDJRjpwQQdFTC-ZlV3fkZEJLgAslyCIkKxjoyLQGTZcj4ozY_kpenl7tz7-c4FcprnaA-9VgLjkqe9lN9KOVfD5f-BNXFKo3iZGmaBVa6gQuYV0ijknsNM-uVmlXxMl0xrqROhUQ61nJzmtodaVZ8e7y_UM5m7hmGKdvzjOVdbK26SCdvkOq1_LsaP8D2kLqtY</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>SPEECHLY-DICK, M. E</creator><creator>GROVER, G. J</creator><creator>YELLON, D. M</creator><general>Lippincott</general><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>19951101</creationdate><title>Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model</title><author>SPEECHLY-DICK, M. E ; GROVER, G. J ; YELLON, D. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e01323cf42529183418a0d752f5676092434eef35e40452629a0e6d28b9a32df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adult</topic><topic>Aged</topic><topic>Alkaloids</topic><topic>Benzophenanthridines</topic><topic>Benzopyrans - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Cardiology. Vascular system</topic><topic>Coronary heart disease</topic><topic>Cromakalim</topic><topic>Diglycerides - pharmacology</topic><topic>Female</topic><topic>Heart</topic><topic>Heart Atria - physiopathology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Myocardial Contraction</topic><topic>Myocardial Ischemia - physiopathology</topic><topic>Myocardial Reperfusion</topic><topic>Phenanthridines - pharmacology</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels - physiology</topic><topic>Protein Kinase C - antagonists &amp; inhibitors</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Kinase C - physiology</topic><topic>Pyrroles - pharmacology</topic><topic>Random Allocation</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SPEECHLY-DICK, M. E</creatorcontrib><creatorcontrib>GROVER, G. J</creatorcontrib><creatorcontrib>YELLON, D. M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SPEECHLY-DICK, M. E</au><au>GROVER, G. J</au><au>YELLON, D. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>1995-11-01</date><risdate>1995</risdate><volume>77</volume><issue>5</issue><spage>1030</spage><epage>1035</epage><pages>1030-1035</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>Protein kinase C (PKC) and the ATP-dependent K+ channel (KATP channel) have been implicated in the mechanism of ischemic preconditioning in animal models. This study investigated the role of KATP channels and PKC in preconditioning in human myocardium and whether KATP channels are activated via a PKC-dependent pathway. Right atrial trabeculae were superfused with Tyrode's solution and paced at 1 Hz. After stabilization, muscles underwent one of nine different protocols, followed by simulated ischemia (SI) consisting of 90 minutes of hypoxic substrate-free superfusion paced at 3 Hz and then by 120 minutes of reperfusion. Preconditioning consisted of 3 minutes of SI and 7 minutes of reperfusion. The experimental end point was recovery of contractile function after SI, presented here as percentage recovery (%Rec) of baseline function. %Rec was significantly improved by preconditioning by the KATP channel opener cromakalim (CK), and by the PKC activator 1,2-dioctanoyl-sn-glycerol (DOG) compared with nonpreconditioned controls when these treatments were given before the SI insult (control group, 29.5 +/- 3.6%; preconditioned group, 63.5 +/- 5.4%, CK-treated group, 52.9 +/- 3.1%; and DOG-treated group, 48.0 +/- 3.5%; P &lt; .01). The effects of CK could be blocked by the KATP channel blocker glibenclamide (%Rec, 17.8 +/- 3.5%). Preconditioning could be blocked by the PKC antagonist chelerythrine (%Rec, 24.1 +/- 5.0%) and the KATP blocker glibenclamide (%Rec, 24.8 +/- 3.1%). The effects of DOG could also be blocked by glibenclamide (%Rec, 23.1 +/- 2.3%).</abstract><cop>Hagerstown, MD</cop><pub>Lippincott</pub><pmid>7554138</pmid><doi>10.1161/01.RES.77.5.1030</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 1995-11, Vol.77 (5), p.1030-1035
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_77569162
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Ovid Autoload
subjects Adenosine Triphosphate - metabolism
Adult
Aged
Alkaloids
Benzophenanthridines
Benzopyrans - pharmacology
Biological and medical sciences
Cardiology. Vascular system
Coronary heart disease
Cromakalim
Diglycerides - pharmacology
Female
Heart
Heart Atria - physiopathology
Humans
In Vitro Techniques
Male
Medical sciences
Middle Aged
Myocardial Contraction
Myocardial Ischemia - physiopathology
Myocardial Reperfusion
Phenanthridines - pharmacology
Potassium Channels - drug effects
Potassium Channels - metabolism
Potassium Channels - physiology
Protein Kinase C - antagonists & inhibitors
Protein Kinase C - metabolism
Protein Kinase C - physiology
Pyrroles - pharmacology
Random Allocation
Time Factors
title Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel : studies of contractile function after simulated ischemia in an atrial in vitro model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20ischemic%20preconditioning%20in%20the%20human%20involve%20protein%20kinase%20C%20and%20the%20ATP-dependent%20K+%20channel%20:%20studies%20of%20contractile%20function%20after%20simulated%20ischemia%20in%20an%20atrial%20in%20vitro%20model&rft.jtitle=Circulation%20research&rft.au=SPEECHLY-DICK,%20M.%20E&rft.date=1995-11-01&rft.volume=77&rft.issue=5&rft.spage=1030&rft.epage=1035&rft.pages=1030-1035&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/01.RES.77.5.1030&rft_dat=%3Cproquest_cross%3E25817557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212410928&rft_id=info:pmid/7554138&rfr_iscdi=true