Glucocorticoids Inhibit Apoptosis of Human Neutrophils
Human neutrophils rapidly undergo apoptotic cell death. Because glucocorticoids are known to modulate an array of neutrophil functional activities as well as induce rapid apoptosis in susceptible lymphocyte populations, we have examined the effects of glucocorticoids on apoptosis in mature human neu...
Gespeichert in:
Veröffentlicht in: | Blood 1995-10, Vol.86 (8), p.3181-3188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3188 |
---|---|
container_issue | 8 |
container_start_page | 3181 |
container_title | Blood |
container_volume | 86 |
creator | Liles, W.Conrad Dale, David C. Klebanoff, Seymour J. |
description | Human neutrophils rapidly undergo apoptotic cell death. Because glucocorticoids are known to modulate an array of neutrophil functional activities as well as induce rapid apoptosis in susceptible lymphocyte populations, we have examined the effects of glucocorticoids on apoptosis in mature human neutrophils. In cultures of neutrophils maintained in vitro, the glucocorticoids, dexamethasone, 6α-methylprednisolone, and hydrocortisone, inhibited the development of apoptotic morphology by 59% to 90% when assessed at 12,24, and 48 hours. In contrast, corticosteroids lacking anti-inflammatory activity and progesterone failed to affect development of the morphologic features of apoptosis. The concentration of dexamethasone required to reduce apoptosis by 50% at 24 hours was approximately 5 x 10-8 mol/L, a concentration that is achievable in plasma after dexamethasone treatment. Dexamethasone (10-6 mol/ L), but not progesterone, reduced the percentage of hypodiploid (apoptotic) nuclei by 40% to 90% over this time course. Similarly, dexamethasone reduced the DNA cleavage associated with apoptosis and prolonged the viability of neutrophils maintained in culture for 12 to 48 hours. Glucocorticoid-mediated modulation of neutrophil apoptosis was qualitatively similar, but lesser in magnitude, when compared with the effects of granulocyte colony-stimulating factor (100 ng/mL). Thus, glucocorticoids exert a protective effect on human neutrophil survival by delaying apoptosis. |
doi_str_mv | 10.1182/blood.V86.8.3181.3181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77568259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120686827</els_id><sourcerecordid>77568259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-f4905e472b966f0fa97484e451d8e87551e50ba9b400a72638fae3db2bced1953</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EKqXwEyplQGwptmPHzoSqCtpKFSzAajnORTVK4mAnSPx70jbqynI33Luvh9Cc4AUhkj7mlXPF4lOmC7lIiCTHcIGmhFMZY0zxJZpijNOYZYJco5sQvjAmLKF8giaCi4yRZIrSddUbZ5zvrHG2CNG22dvcdtGydW3ngg2RK6NNX-smeoW-867d2yrcoqtSVwHuxjxDHy_P76tNvHtbb1fLXWxYwrq4ZBnmwATNszQtcakzwSQDxkkhQQrOCXCc6yxnGGtB00SWGpIip7mBgmQ8maGH09zWu-8eQqdqGwxUlW7A9UEJwVNJeTaA_AQa70LwUKrW21r7X0WwOvhSR19q8KWkOqg6hqFvPi7o8xqKc9coaKjfj3UdjK5KrxtjwxlLBGacsgF7OmEwyPix4FUwFprhC-vBdKpw9p9D_gAeSYln</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77568259</pqid></control><display><type>article</type><title>Glucocorticoids Inhibit Apoptosis of Human Neutrophils</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liles, W.Conrad ; Dale, David C. ; Klebanoff, Seymour J.</creator><creatorcontrib>Liles, W.Conrad ; Dale, David C. ; Klebanoff, Seymour J.</creatorcontrib><description>Human neutrophils rapidly undergo apoptotic cell death. Because glucocorticoids are known to modulate an array of neutrophil functional activities as well as induce rapid apoptosis in susceptible lymphocyte populations, we have examined the effects of glucocorticoids on apoptosis in mature human neutrophils. In cultures of neutrophils maintained in vitro, the glucocorticoids, dexamethasone, 6α-methylprednisolone, and hydrocortisone, inhibited the development of apoptotic morphology by 59% to 90% when assessed at 12,24, and 48 hours. In contrast, corticosteroids lacking anti-inflammatory activity and progesterone failed to affect development of the morphologic features of apoptosis. The concentration of dexamethasone required to reduce apoptosis by 50% at 24 hours was approximately 5 x 10-8 mol/L, a concentration that is achievable in plasma after dexamethasone treatment. Dexamethasone (10-6 mol/ L), but not progesterone, reduced the percentage of hypodiploid (apoptotic) nuclei by 40% to 90% over this time course. Similarly, dexamethasone reduced the DNA cleavage associated with apoptosis and prolonged the viability of neutrophils maintained in culture for 12 to 48 hours. Glucocorticoid-mediated modulation of neutrophil apoptosis was qualitatively similar, but lesser in magnitude, when compared with the effects of granulocyte colony-stimulating factor (100 ng/mL). Thus, glucocorticoids exert a protective effect on human neutrophil survival by delaying apoptosis.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood.V86.8.3181.3181</identifier><identifier>PMID: 7579413</identifier><language>eng</language><publisher>Washington, DC: Elsevier Inc</publisher><subject>Ageing, cell death ; Anti-Inflammatory Agents - pharmacology ; Apoptosis - drug effects ; Biological and medical sciences ; Cell physiology ; Cells, Cultured ; Depression, Chemical ; Dexamethasone - pharmacology ; DNA Damage ; Fundamental and applied biological sciences. Psychology ; Glucocorticoids - pharmacology ; Granulocyte Colony-Stimulating Factor - pharmacology ; Humans ; Molecular and cellular biology ; Neutrophils - drug effects ; Neutrophils - ultrastructure ; Progesterone - pharmacology</subject><ispartof>Blood, 1995-10, Vol.86 (8), p.3181-3188</ispartof><rights>1995 American Society of Hematology</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-f4905e472b966f0fa97484e451d8e87551e50ba9b400a72638fae3db2bced1953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3704524$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7579413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liles, W.Conrad</creatorcontrib><creatorcontrib>Dale, David C.</creatorcontrib><creatorcontrib>Klebanoff, Seymour J.</creatorcontrib><title>Glucocorticoids Inhibit Apoptosis of Human Neutrophils</title><title>Blood</title><addtitle>Blood</addtitle><description>Human neutrophils rapidly undergo apoptotic cell death. Because glucocorticoids are known to modulate an array of neutrophil functional activities as well as induce rapid apoptosis in susceptible lymphocyte populations, we have examined the effects of glucocorticoids on apoptosis in mature human neutrophils. In cultures of neutrophils maintained in vitro, the glucocorticoids, dexamethasone, 6α-methylprednisolone, and hydrocortisone, inhibited the development of apoptotic morphology by 59% to 90% when assessed at 12,24, and 48 hours. In contrast, corticosteroids lacking anti-inflammatory activity and progesterone failed to affect development of the morphologic features of apoptosis. The concentration of dexamethasone required to reduce apoptosis by 50% at 24 hours was approximately 5 x 10-8 mol/L, a concentration that is achievable in plasma after dexamethasone treatment. Dexamethasone (10-6 mol/ L), but not progesterone, reduced the percentage of hypodiploid (apoptotic) nuclei by 40% to 90% over this time course. Similarly, dexamethasone reduced the DNA cleavage associated with apoptosis and prolonged the viability of neutrophils maintained in culture for 12 to 48 hours. Glucocorticoid-mediated modulation of neutrophil apoptosis was qualitatively similar, but lesser in magnitude, when compared with the effects of granulocyte colony-stimulating factor (100 ng/mL). Thus, glucocorticoids exert a protective effect on human neutrophil survival by delaying apoptosis.</description><subject>Ageing, cell death</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Cells, Cultured</subject><subject>Depression, Chemical</subject><subject>Dexamethasone - pharmacology</subject><subject>DNA Damage</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucocorticoids - pharmacology</subject><subject>Granulocyte Colony-Stimulating Factor - pharmacology</subject><subject>Humans</subject><subject>Molecular and cellular biology</subject><subject>Neutrophils - drug effects</subject><subject>Neutrophils - ultrastructure</subject><subject>Progesterone - pharmacology</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQQC0EKqXwEyplQGwptmPHzoSqCtpKFSzAajnORTVK4mAnSPx70jbqynI33Luvh9Cc4AUhkj7mlXPF4lOmC7lIiCTHcIGmhFMZY0zxJZpijNOYZYJco5sQvjAmLKF8giaCi4yRZIrSddUbZ5zvrHG2CNG22dvcdtGydW3ngg2RK6NNX-smeoW-867d2yrcoqtSVwHuxjxDHy_P76tNvHtbb1fLXWxYwrq4ZBnmwATNszQtcakzwSQDxkkhQQrOCXCc6yxnGGtB00SWGpIip7mBgmQ8maGH09zWu-8eQqdqGwxUlW7A9UEJwVNJeTaA_AQa70LwUKrW21r7X0WwOvhSR19q8KWkOqg6hqFvPi7o8xqKc9coaKjfj3UdjK5KrxtjwxlLBGacsgF7OmEwyPix4FUwFprhC-vBdKpw9p9D_gAeSYln</recordid><startdate>19951015</startdate><enddate>19951015</enddate><creator>Liles, W.Conrad</creator><creator>Dale, David C.</creator><creator>Klebanoff, Seymour J.</creator><general>Elsevier Inc</general><general>The Americain Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19951015</creationdate><title>Glucocorticoids Inhibit Apoptosis of Human Neutrophils</title><author>Liles, W.Conrad ; Dale, David C. ; Klebanoff, Seymour J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-f4905e472b966f0fa97484e451d8e87551e50ba9b400a72638fae3db2bced1953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Ageing, cell death</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Cells, Cultured</topic><topic>Depression, Chemical</topic><topic>Dexamethasone - pharmacology</topic><topic>DNA Damage</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucocorticoids - pharmacology</topic><topic>Granulocyte Colony-Stimulating Factor - pharmacology</topic><topic>Humans</topic><topic>Molecular and cellular biology</topic><topic>Neutrophils - drug effects</topic><topic>Neutrophils - ultrastructure</topic><topic>Progesterone - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liles, W.Conrad</creatorcontrib><creatorcontrib>Dale, David C.</creatorcontrib><creatorcontrib>Klebanoff, Seymour J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liles, W.Conrad</au><au>Dale, David C.</au><au>Klebanoff, Seymour J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucocorticoids Inhibit Apoptosis of Human Neutrophils</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>1995-10-15</date><risdate>1995</risdate><volume>86</volume><issue>8</issue><spage>3181</spage><epage>3188</epage><pages>3181-3188</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Human neutrophils rapidly undergo apoptotic cell death. Because glucocorticoids are known to modulate an array of neutrophil functional activities as well as induce rapid apoptosis in susceptible lymphocyte populations, we have examined the effects of glucocorticoids on apoptosis in mature human neutrophils. In cultures of neutrophils maintained in vitro, the glucocorticoids, dexamethasone, 6α-methylprednisolone, and hydrocortisone, inhibited the development of apoptotic morphology by 59% to 90% when assessed at 12,24, and 48 hours. In contrast, corticosteroids lacking anti-inflammatory activity and progesterone failed to affect development of the morphologic features of apoptosis. The concentration of dexamethasone required to reduce apoptosis by 50% at 24 hours was approximately 5 x 10-8 mol/L, a concentration that is achievable in plasma after dexamethasone treatment. Dexamethasone (10-6 mol/ L), but not progesterone, reduced the percentage of hypodiploid (apoptotic) nuclei by 40% to 90% over this time course. Similarly, dexamethasone reduced the DNA cleavage associated with apoptosis and prolonged the viability of neutrophils maintained in culture for 12 to 48 hours. Glucocorticoid-mediated modulation of neutrophil apoptosis was qualitatively similar, but lesser in magnitude, when compared with the effects of granulocyte colony-stimulating factor (100 ng/mL). Thus, glucocorticoids exert a protective effect on human neutrophil survival by delaying apoptosis.</abstract><cop>Washington, DC</cop><pub>Elsevier Inc</pub><pmid>7579413</pmid><doi>10.1182/blood.V86.8.3181.3181</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 1995-10, Vol.86 (8), p.3181-3188 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_proquest_miscellaneous_77568259 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Ageing, cell death Anti-Inflammatory Agents - pharmacology Apoptosis - drug effects Biological and medical sciences Cell physiology Cells, Cultured Depression, Chemical Dexamethasone - pharmacology DNA Damage Fundamental and applied biological sciences. Psychology Glucocorticoids - pharmacology Granulocyte Colony-Stimulating Factor - pharmacology Humans Molecular and cellular biology Neutrophils - drug effects Neutrophils - ultrastructure Progesterone - pharmacology |
title | Glucocorticoids Inhibit Apoptosis of Human Neutrophils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucocorticoids%20Inhibit%20Apoptosis%20of%20Human%20Neutrophils&rft.jtitle=Blood&rft.au=Liles,%20W.Conrad&rft.date=1995-10-15&rft.volume=86&rft.issue=8&rft.spage=3181&rft.epage=3188&rft.pages=3181-3188&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood.V86.8.3181.3181&rft_dat=%3Cproquest_cross%3E77568259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77568259&rft_id=info:pmid/7579413&rft_els_id=S0006497120686827&rfr_iscdi=true |