Maximizing signal-to-noise and contrast-to-noise ratios in flash imaging
This paper presents an analysis of signal-to-noise and contrast-to-noise ratios from small tip angle, gradient reversal (FLASH) imaging. Analytic and numerical techniques are used to determine the delay times and tip angles that maximize signal-to-noise per unit time from a single tissue. Similar pr...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance imaging 1987, Vol.5 (2), p.117-127 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an analysis of signal-to-noise and contrast-to-noise ratios from small tip angle, gradient reversal (FLASH) imaging. Analytic and numerical techniques are used to determine the delay times and tip angles that maximize signal-to-noise per unit time from a single tissue. Similar procedures are used to determine the delay times and tip angles that maximize both T1-induced and T-2
∗-induced contrast-to-noise per unit time for a pair of tissues as a function of tissue characteristics and pulse sequence sampling times. The advantage of optimized FLASH imaging over optimized spin-echo imaging is quantitated by comparing signal-to-noise and contrast-to-noise ratios per unit time from the two sequences. Images are used to confirm these numerical results, to compare noise levels resulting from gradient reversals versus 180° rephasing pulses and to assess the possible adverse effects of static magnetic field inhomogeneities on FLASH imaging. |
---|---|
ISSN: | 0730-725X 1873-5894 |
DOI: | 10.1016/0730-725X(87)90041-5 |