The crystal structure of the catalytic domain of human urokinase-type plasminogen activator
Background: Urokinase-type plasminogen activator (u-PA) promotes fibrinolysis by catalyzing the conversion of plasminogen to the active protease plasmin via the cleavage of a peptide bond. When localized to the external cell surface it contributes to tissue remodelling and cellular migration; inhibi...
Gespeichert in:
Veröffentlicht in: | Structure (London) 1995-07, Vol.3 (7), p.681-691 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 691 |
---|---|
container_issue | 7 |
container_start_page | 681 |
container_title | Structure (London) |
container_volume | 3 |
creator | Spraggon, Glen Phillips, Christopher Nowak, Ursula K Ponting, Christopher P Saunders, Derek Dobson, Christopher M Stuart, David I Jones, E.Yvonne |
description | Background: Urokinase-type plasminogen activator (u-PA) promotes fibrinolysis by catalyzing the conversion of plasminogen to the active protease plasmin via the cleavage of a peptide bond. When localized to the external cell surface it contributes to tissue remodelling and cellular migration; inhibition of its activity impedes the spread of cancer. u-PA has three domains: an N-terminal receptor-binding growth factor domain, a central kringle domain and a C-terminal catalytic protease domain. The biological roles of the fibrinolytic enzymes render them therapeutic targets, however, until now no structure of the protease domain has been available. Solution of the structure of the u-PA serine protease was undertaken to provide such data.
Results The crystal structure of the catalytic domain of recombinant, non-glycosylated human u-PA, complexed with the inhibitor Glu–Gly–Arg chloromethyl ketone (EGRcmk), has been determined at a nominal resolution of 2.5 å and refined to a crystallographic R-factor of 22.4 % on all data (20.4 % on data >3
σ). The enzyme has the expected topology of a trypsin-like serine protease.
Conclusion The enzyme has an S1 specificity pocket similar to that of trypsin, a restricted, less accessible, hydrophobic S2 pocket and a solvent-accessible S3 pocket which is capable of accommodating a wide range of residues. The EGRcmk inhibitor binds covalently at the active site to form a tetrahedral hemiketal structure. Although the overall structure is similar to that of homologous serine proteases, at six positions insertions of extra residues in loop regions create unique surface areas. One of these loop regions is highly mobile despite being anchored by the disulphide bridge which is characteristic of a small subset of serine proteases namely tissuetype plasminogen activator, Factor XII and Complement Factor I. |
doi_str_mv | 10.1016/S0969-2126(01)00203-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77533931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212601002039</els_id><sourcerecordid>77533931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-386a3937fa256655e0cc8599b54545759ed7e363b2d8b95057de7012fc5fadfd3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EKqXwCZWyQrAI2HGcxCuEKl5SJRaUFQvLsSfUkMTFdir173EfYotmYWnunbnjg9CU4BuCSXH7hnnB04xkxRUm1xhnmKb8CI1JVVZpTqriGI3_LKfozPsvHF0M4xEaVYwTnLMx-lgsIVFu44NsEx_coMLgILFNEraCjO1NMCrRtpOm3_aXQyf7ZHD22_TSQxo2K0hWrfSd6e0n9IlUwaxlsO4cnTSy9XBxeCfo_fFhMXtO569PL7P7eapySkJKq0JSTstGZqwoGAOsVLyP1yyPVTIOugRa0DrTVc0ZZqWGEpOsUayRutF0gi73e1fO_gzgg-iMV9C2sgc7eFGWjMYAEo1sb1TOeu-gEStnOuk2gmCxhSp2UMWWmMBE7KAKHuemh4Ch7kD_TR0oRv1ur0P85dqAE14Z6BVo40AFoa35J-EXLDyHkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77533931</pqid></control><display><type>article</type><title>The crystal structure of the catalytic domain of human urokinase-type plasminogen activator</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Spraggon, Glen ; Phillips, Christopher ; Nowak, Ursula K ; Ponting, Christopher P ; Saunders, Derek ; Dobson, Christopher M ; Stuart, David I ; Jones, E.Yvonne</creator><creatorcontrib>Spraggon, Glen ; Phillips, Christopher ; Nowak, Ursula K ; Ponting, Christopher P ; Saunders, Derek ; Dobson, Christopher M ; Stuart, David I ; Jones, E.Yvonne</creatorcontrib><description>Background: Urokinase-type plasminogen activator (u-PA) promotes fibrinolysis by catalyzing the conversion of plasminogen to the active protease plasmin via the cleavage of a peptide bond. When localized to the external cell surface it contributes to tissue remodelling and cellular migration; inhibition of its activity impedes the spread of cancer. u-PA has three domains: an N-terminal receptor-binding growth factor domain, a central kringle domain and a C-terminal catalytic protease domain. The biological roles of the fibrinolytic enzymes render them therapeutic targets, however, until now no structure of the protease domain has been available. Solution of the structure of the u-PA serine protease was undertaken to provide such data.
Results The crystal structure of the catalytic domain of recombinant, non-glycosylated human u-PA, complexed with the inhibitor Glu–Gly–Arg chloromethyl ketone (EGRcmk), has been determined at a nominal resolution of 2.5 å and refined to a crystallographic R-factor of 22.4 % on all data (20.4 % on data >3
σ). The enzyme has the expected topology of a trypsin-like serine protease.
Conclusion The enzyme has an S1 specificity pocket similar to that of trypsin, a restricted, less accessible, hydrophobic S2 pocket and a solvent-accessible S3 pocket which is capable of accommodating a wide range of residues. The EGRcmk inhibitor binds covalently at the active site to form a tetrahedral hemiketal structure. Although the overall structure is similar to that of homologous serine proteases, at six positions insertions of extra residues in loop regions create unique surface areas. One of these loop regions is highly mobile despite being anchored by the disulphide bridge which is characteristic of a small subset of serine proteases namely tissuetype plasminogen activator, Factor XII and Complement Factor I.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/S0969-2126(01)00203-9</identifier><identifier>PMID: 8591045</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Binding Sites ; Chymotrypsin - chemistry ; Crystallography, X-Ray ; fibrinolysis ; Glycosylation ; Humans ; inhibitor–protein interaction ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - isolation & purification ; Sequence Homology, Amino Acid ; serine protease ; Thrombin - chemistry ; Urokinase-Type Plasminogen Activator - biosynthesis ; Urokinase-Type Plasminogen Activator - chemistry ; Urokinase-Type Plasminogen Activator - isolation & purification ; variable regions ; X-ray crystallography</subject><ispartof>Structure (London), 1995-07, Vol.3 (7), p.681-691</ispartof><rights>1995 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-386a3937fa256655e0cc8599b54545759ed7e363b2d8b95057de7012fc5fadfd3</citedby><cites>FETCH-LOGICAL-c431t-386a3937fa256655e0cc8599b54545759ed7e363b2d8b95057de7012fc5fadfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0969-2126(01)00203-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8591045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spraggon, Glen</creatorcontrib><creatorcontrib>Phillips, Christopher</creatorcontrib><creatorcontrib>Nowak, Ursula K</creatorcontrib><creatorcontrib>Ponting, Christopher P</creatorcontrib><creatorcontrib>Saunders, Derek</creatorcontrib><creatorcontrib>Dobson, Christopher M</creatorcontrib><creatorcontrib>Stuart, David I</creatorcontrib><creatorcontrib>Jones, E.Yvonne</creatorcontrib><title>The crystal structure of the catalytic domain of human urokinase-type plasminogen activator</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Background: Urokinase-type plasminogen activator (u-PA) promotes fibrinolysis by catalyzing the conversion of plasminogen to the active protease plasmin via the cleavage of a peptide bond. When localized to the external cell surface it contributes to tissue remodelling and cellular migration; inhibition of its activity impedes the spread of cancer. u-PA has three domains: an N-terminal receptor-binding growth factor domain, a central kringle domain and a C-terminal catalytic protease domain. The biological roles of the fibrinolytic enzymes render them therapeutic targets, however, until now no structure of the protease domain has been available. Solution of the structure of the u-PA serine protease was undertaken to provide such data.
Results The crystal structure of the catalytic domain of recombinant, non-glycosylated human u-PA, complexed with the inhibitor Glu–Gly–Arg chloromethyl ketone (EGRcmk), has been determined at a nominal resolution of 2.5 å and refined to a crystallographic R-factor of 22.4 % on all data (20.4 % on data >3
σ). The enzyme has the expected topology of a trypsin-like serine protease.
Conclusion The enzyme has an S1 specificity pocket similar to that of trypsin, a restricted, less accessible, hydrophobic S2 pocket and a solvent-accessible S3 pocket which is capable of accommodating a wide range of residues. The EGRcmk inhibitor binds covalently at the active site to form a tetrahedral hemiketal structure. Although the overall structure is similar to that of homologous serine proteases, at six positions insertions of extra residues in loop regions create unique surface areas. One of these loop regions is highly mobile despite being anchored by the disulphide bridge which is characteristic of a small subset of serine proteases namely tissuetype plasminogen activator, Factor XII and Complement Factor I.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Chymotrypsin - chemistry</subject><subject>Crystallography, X-Ray</subject><subject>fibrinolysis</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>inhibitor–protein interaction</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Sequence Homology, Amino Acid</subject><subject>serine protease</subject><subject>Thrombin - chemistry</subject><subject>Urokinase-Type Plasminogen Activator - biosynthesis</subject><subject>Urokinase-Type Plasminogen Activator - chemistry</subject><subject>Urokinase-Type Plasminogen Activator - isolation & purification</subject><subject>variable regions</subject><subject>X-ray crystallography</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EKqXwCZWyQrAI2HGcxCuEKl5SJRaUFQvLsSfUkMTFdir173EfYotmYWnunbnjg9CU4BuCSXH7hnnB04xkxRUm1xhnmKb8CI1JVVZpTqriGI3_LKfozPsvHF0M4xEaVYwTnLMx-lgsIVFu44NsEx_coMLgILFNEraCjO1NMCrRtpOm3_aXQyf7ZHD22_TSQxo2K0hWrfSd6e0n9IlUwaxlsO4cnTSy9XBxeCfo_fFhMXtO569PL7P7eapySkJKq0JSTstGZqwoGAOsVLyP1yyPVTIOugRa0DrTVc0ZZqWGEpOsUayRutF0gi73e1fO_gzgg-iMV9C2sgc7eFGWjMYAEo1sb1TOeu-gEStnOuk2gmCxhSp2UMWWmMBE7KAKHuemh4Ch7kD_TR0oRv1ur0P85dqAE14Z6BVo40AFoa35J-EXLDyHkA</recordid><startdate>19950715</startdate><enddate>19950715</enddate><creator>Spraggon, Glen</creator><creator>Phillips, Christopher</creator><creator>Nowak, Ursula K</creator><creator>Ponting, Christopher P</creator><creator>Saunders, Derek</creator><creator>Dobson, Christopher M</creator><creator>Stuart, David I</creator><creator>Jones, E.Yvonne</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19950715</creationdate><title>The crystal structure of the catalytic domain of human urokinase-type plasminogen activator</title><author>Spraggon, Glen ; Phillips, Christopher ; Nowak, Ursula K ; Ponting, Christopher P ; Saunders, Derek ; Dobson, Christopher M ; Stuart, David I ; Jones, E.Yvonne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-386a3937fa256655e0cc8599b54545759ed7e363b2d8b95057de7012fc5fadfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Chymotrypsin - chemistry</topic><topic>Crystallography, X-Ray</topic><topic>fibrinolysis</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>inhibitor–protein interaction</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Sequence Homology, Amino Acid</topic><topic>serine protease</topic><topic>Thrombin - chemistry</topic><topic>Urokinase-Type Plasminogen Activator - biosynthesis</topic><topic>Urokinase-Type Plasminogen Activator - chemistry</topic><topic>Urokinase-Type Plasminogen Activator - isolation & purification</topic><topic>variable regions</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spraggon, Glen</creatorcontrib><creatorcontrib>Phillips, Christopher</creatorcontrib><creatorcontrib>Nowak, Ursula K</creatorcontrib><creatorcontrib>Ponting, Christopher P</creatorcontrib><creatorcontrib>Saunders, Derek</creatorcontrib><creatorcontrib>Dobson, Christopher M</creatorcontrib><creatorcontrib>Stuart, David I</creatorcontrib><creatorcontrib>Jones, E.Yvonne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spraggon, Glen</au><au>Phillips, Christopher</au><au>Nowak, Ursula K</au><au>Ponting, Christopher P</au><au>Saunders, Derek</au><au>Dobson, Christopher M</au><au>Stuart, David I</au><au>Jones, E.Yvonne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The crystal structure of the catalytic domain of human urokinase-type plasminogen activator</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>1995-07-15</date><risdate>1995</risdate><volume>3</volume><issue>7</issue><spage>681</spage><epage>691</epage><pages>681-691</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Background: Urokinase-type plasminogen activator (u-PA) promotes fibrinolysis by catalyzing the conversion of plasminogen to the active protease plasmin via the cleavage of a peptide bond. When localized to the external cell surface it contributes to tissue remodelling and cellular migration; inhibition of its activity impedes the spread of cancer. u-PA has three domains: an N-terminal receptor-binding growth factor domain, a central kringle domain and a C-terminal catalytic protease domain. The biological roles of the fibrinolytic enzymes render them therapeutic targets, however, until now no structure of the protease domain has been available. Solution of the structure of the u-PA serine protease was undertaken to provide such data.
Results The crystal structure of the catalytic domain of recombinant, non-glycosylated human u-PA, complexed with the inhibitor Glu–Gly–Arg chloromethyl ketone (EGRcmk), has been determined at a nominal resolution of 2.5 å and refined to a crystallographic R-factor of 22.4 % on all data (20.4 % on data >3
σ). The enzyme has the expected topology of a trypsin-like serine protease.
Conclusion The enzyme has an S1 specificity pocket similar to that of trypsin, a restricted, less accessible, hydrophobic S2 pocket and a solvent-accessible S3 pocket which is capable of accommodating a wide range of residues. The EGRcmk inhibitor binds covalently at the active site to form a tetrahedral hemiketal structure. Although the overall structure is similar to that of homologous serine proteases, at six positions insertions of extra residues in loop regions create unique surface areas. One of these loop regions is highly mobile despite being anchored by the disulphide bridge which is characteristic of a small subset of serine proteases namely tissuetype plasminogen activator, Factor XII and Complement Factor I.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>8591045</pmid><doi>10.1016/S0969-2126(01)00203-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 1995-07, Vol.3 (7), p.681-691 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_proquest_miscellaneous_77533931 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Binding Sites Chymotrypsin - chemistry Crystallography, X-Ray fibrinolysis Glycosylation Humans inhibitor–protein interaction Models, Molecular Molecular Sequence Data Protein Conformation Protein Structure, Secondary Recombinant Proteins - biosynthesis Recombinant Proteins - chemistry Recombinant Proteins - isolation & purification Sequence Homology, Amino Acid serine protease Thrombin - chemistry Urokinase-Type Plasminogen Activator - biosynthesis Urokinase-Type Plasminogen Activator - chemistry Urokinase-Type Plasminogen Activator - isolation & purification variable regions X-ray crystallography |
title | The crystal structure of the catalytic domain of human urokinase-type plasminogen activator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20crystal%20structure%20of%20the%20catalytic%20domain%20of%20human%20urokinase-type%20plasminogen%20activator&rft.jtitle=Structure%20(London)&rft.au=Spraggon,%20Glen&rft.date=1995-07-15&rft.volume=3&rft.issue=7&rft.spage=681&rft.epage=691&rft.pages=681-691&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/S0969-2126(01)00203-9&rft_dat=%3Cproquest_cross%3E77533931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77533931&rft_id=info:pmid/8591045&rft_els_id=S0969212601002039&rfr_iscdi=true |