The crystal structure of the catalytic domain of human urokinase-type plasminogen activator

Background: Urokinase-type plasminogen activator (u-PA) promotes fibrinolysis by catalyzing the conversion of plasminogen to the active protease plasmin via the cleavage of a peptide bond. When localized to the external cell surface it contributes to tissue remodelling and cellular migration; inhibi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structure (London) 1995-07, Vol.3 (7), p.681-691
Hauptverfasser: Spraggon, Glen, Phillips, Christopher, Nowak, Ursula K, Ponting, Christopher P, Saunders, Derek, Dobson, Christopher M, Stuart, David I, Jones, E.Yvonne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 7
container_start_page 681
container_title Structure (London)
container_volume 3
creator Spraggon, Glen
Phillips, Christopher
Nowak, Ursula K
Ponting, Christopher P
Saunders, Derek
Dobson, Christopher M
Stuart, David I
Jones, E.Yvonne
description Background: Urokinase-type plasminogen activator (u-PA) promotes fibrinolysis by catalyzing the conversion of plasminogen to the active protease plasmin via the cleavage of a peptide bond. When localized to the external cell surface it contributes to tissue remodelling and cellular migration; inhibition of its activity impedes the spread of cancer. u-PA has three domains: an N-terminal receptor-binding growth factor domain, a central kringle domain and a C-terminal catalytic protease domain. The biological roles of the fibrinolytic enzymes render them therapeutic targets, however, until now no structure of the protease domain has been available. Solution of the structure of the u-PA serine protease was undertaken to provide such data. Results The crystal structure of the catalytic domain of recombinant, non-glycosylated human u-PA, complexed with the inhibitor Glu–Gly–Arg chloromethyl ketone (EGRcmk), has been determined at a nominal resolution of 2.5 å and refined to a crystallographic R-factor of 22.4 % on all data (20.4 % on data >3 σ). The enzyme has the expected topology of a trypsin-like serine protease. Conclusion The enzyme has an S1 specificity pocket similar to that of trypsin, a restricted, less accessible, hydrophobic S2 pocket and a solvent-accessible S3 pocket which is capable of accommodating a wide range of residues. The EGRcmk inhibitor binds covalently at the active site to form a tetrahedral hemiketal structure. Although the overall structure is similar to that of homologous serine proteases, at six positions insertions of extra residues in loop regions create unique surface areas. One of these loop regions is highly mobile despite being anchored by the disulphide bridge which is characteristic of a small subset of serine proteases namely tissuetype plasminogen activator, Factor XII and Complement Factor I.
doi_str_mv 10.1016/S0969-2126(01)00203-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77533931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212601002039</els_id><sourcerecordid>77533931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-386a3937fa256655e0cc8599b54545759ed7e363b2d8b95057de7012fc5fadfd3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EKqXwCZWyQrAI2HGcxCuEKl5SJRaUFQvLsSfUkMTFdir173EfYotmYWnunbnjg9CU4BuCSXH7hnnB04xkxRUm1xhnmKb8CI1JVVZpTqriGI3_LKfozPsvHF0M4xEaVYwTnLMx-lgsIVFu44NsEx_coMLgILFNEraCjO1NMCrRtpOm3_aXQyf7ZHD22_TSQxo2K0hWrfSd6e0n9IlUwaxlsO4cnTSy9XBxeCfo_fFhMXtO569PL7P7eapySkJKq0JSTstGZqwoGAOsVLyP1yyPVTIOugRa0DrTVc0ZZqWGEpOsUayRutF0gi73e1fO_gzgg-iMV9C2sgc7eFGWjMYAEo1sb1TOeu-gEStnOuk2gmCxhSp2UMWWmMBE7KAKHuemh4Ch7kD_TR0oRv1ur0P85dqAE14Z6BVo40AFoa35J-EXLDyHkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77533931</pqid></control><display><type>article</type><title>The crystal structure of the catalytic domain of human urokinase-type plasminogen activator</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Spraggon, Glen ; Phillips, Christopher ; Nowak, Ursula K ; Ponting, Christopher P ; Saunders, Derek ; Dobson, Christopher M ; Stuart, David I ; Jones, E.Yvonne</creator><creatorcontrib>Spraggon, Glen ; Phillips, Christopher ; Nowak, Ursula K ; Ponting, Christopher P ; Saunders, Derek ; Dobson, Christopher M ; Stuart, David I ; Jones, E.Yvonne</creatorcontrib><description>Background: Urokinase-type plasminogen activator (u-PA) promotes fibrinolysis by catalyzing the conversion of plasminogen to the active protease plasmin via the cleavage of a peptide bond. When localized to the external cell surface it contributes to tissue remodelling and cellular migration; inhibition of its activity impedes the spread of cancer. u-PA has three domains: an N-terminal receptor-binding growth factor domain, a central kringle domain and a C-terminal catalytic protease domain. The biological roles of the fibrinolytic enzymes render them therapeutic targets, however, until now no structure of the protease domain has been available. Solution of the structure of the u-PA serine protease was undertaken to provide such data. Results The crystal structure of the catalytic domain of recombinant, non-glycosylated human u-PA, complexed with the inhibitor Glu–Gly–Arg chloromethyl ketone (EGRcmk), has been determined at a nominal resolution of 2.5 å and refined to a crystallographic R-factor of 22.4 % on all data (20.4 % on data &gt;3 σ). The enzyme has the expected topology of a trypsin-like serine protease. Conclusion The enzyme has an S1 specificity pocket similar to that of trypsin, a restricted, less accessible, hydrophobic S2 pocket and a solvent-accessible S3 pocket which is capable of accommodating a wide range of residues. The EGRcmk inhibitor binds covalently at the active site to form a tetrahedral hemiketal structure. Although the overall structure is similar to that of homologous serine proteases, at six positions insertions of extra residues in loop regions create unique surface areas. One of these loop regions is highly mobile despite being anchored by the disulphide bridge which is characteristic of a small subset of serine proteases namely tissuetype plasminogen activator, Factor XII and Complement Factor I.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/S0969-2126(01)00203-9</identifier><identifier>PMID: 8591045</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Binding Sites ; Chymotrypsin - chemistry ; Crystallography, X-Ray ; fibrinolysis ; Glycosylation ; Humans ; inhibitor–protein interaction ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - isolation &amp; purification ; Sequence Homology, Amino Acid ; serine protease ; Thrombin - chemistry ; Urokinase-Type Plasminogen Activator - biosynthesis ; Urokinase-Type Plasminogen Activator - chemistry ; Urokinase-Type Plasminogen Activator - isolation &amp; purification ; variable regions ; X-ray crystallography</subject><ispartof>Structure (London), 1995-07, Vol.3 (7), p.681-691</ispartof><rights>1995 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-386a3937fa256655e0cc8599b54545759ed7e363b2d8b95057de7012fc5fadfd3</citedby><cites>FETCH-LOGICAL-c431t-386a3937fa256655e0cc8599b54545759ed7e363b2d8b95057de7012fc5fadfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0969-2126(01)00203-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8591045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spraggon, Glen</creatorcontrib><creatorcontrib>Phillips, Christopher</creatorcontrib><creatorcontrib>Nowak, Ursula K</creatorcontrib><creatorcontrib>Ponting, Christopher P</creatorcontrib><creatorcontrib>Saunders, Derek</creatorcontrib><creatorcontrib>Dobson, Christopher M</creatorcontrib><creatorcontrib>Stuart, David I</creatorcontrib><creatorcontrib>Jones, E.Yvonne</creatorcontrib><title>The crystal structure of the catalytic domain of human urokinase-type plasminogen activator</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Background: Urokinase-type plasminogen activator (u-PA) promotes fibrinolysis by catalyzing the conversion of plasminogen to the active protease plasmin via the cleavage of a peptide bond. When localized to the external cell surface it contributes to tissue remodelling and cellular migration; inhibition of its activity impedes the spread of cancer. u-PA has three domains: an N-terminal receptor-binding growth factor domain, a central kringle domain and a C-terminal catalytic protease domain. The biological roles of the fibrinolytic enzymes render them therapeutic targets, however, until now no structure of the protease domain has been available. Solution of the structure of the u-PA serine protease was undertaken to provide such data. Results The crystal structure of the catalytic domain of recombinant, non-glycosylated human u-PA, complexed with the inhibitor Glu–Gly–Arg chloromethyl ketone (EGRcmk), has been determined at a nominal resolution of 2.5 å and refined to a crystallographic R-factor of 22.4 % on all data (20.4 % on data &gt;3 σ). The enzyme has the expected topology of a trypsin-like serine protease. Conclusion The enzyme has an S1 specificity pocket similar to that of trypsin, a restricted, less accessible, hydrophobic S2 pocket and a solvent-accessible S3 pocket which is capable of accommodating a wide range of residues. The EGRcmk inhibitor binds covalently at the active site to form a tetrahedral hemiketal structure. Although the overall structure is similar to that of homologous serine proteases, at six positions insertions of extra residues in loop regions create unique surface areas. One of these loop regions is highly mobile despite being anchored by the disulphide bridge which is characteristic of a small subset of serine proteases namely tissuetype plasminogen activator, Factor XII and Complement Factor I.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Chymotrypsin - chemistry</subject><subject>Crystallography, X-Ray</subject><subject>fibrinolysis</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>inhibitor–protein interaction</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Sequence Homology, Amino Acid</subject><subject>serine protease</subject><subject>Thrombin - chemistry</subject><subject>Urokinase-Type Plasminogen Activator - biosynthesis</subject><subject>Urokinase-Type Plasminogen Activator - chemistry</subject><subject>Urokinase-Type Plasminogen Activator - isolation &amp; purification</subject><subject>variable regions</subject><subject>X-ray crystallography</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EKqXwCZWyQrAI2HGcxCuEKl5SJRaUFQvLsSfUkMTFdir173EfYotmYWnunbnjg9CU4BuCSXH7hnnB04xkxRUm1xhnmKb8CI1JVVZpTqriGI3_LKfozPsvHF0M4xEaVYwTnLMx-lgsIVFu44NsEx_coMLgILFNEraCjO1NMCrRtpOm3_aXQyf7ZHD22_TSQxo2K0hWrfSd6e0n9IlUwaxlsO4cnTSy9XBxeCfo_fFhMXtO569PL7P7eapySkJKq0JSTstGZqwoGAOsVLyP1yyPVTIOugRa0DrTVc0ZZqWGEpOsUayRutF0gi73e1fO_gzgg-iMV9C2sgc7eFGWjMYAEo1sb1TOeu-gEStnOuk2gmCxhSp2UMWWmMBE7KAKHuemh4Ch7kD_TR0oRv1ur0P85dqAE14Z6BVo40AFoa35J-EXLDyHkA</recordid><startdate>19950715</startdate><enddate>19950715</enddate><creator>Spraggon, Glen</creator><creator>Phillips, Christopher</creator><creator>Nowak, Ursula K</creator><creator>Ponting, Christopher P</creator><creator>Saunders, Derek</creator><creator>Dobson, Christopher M</creator><creator>Stuart, David I</creator><creator>Jones, E.Yvonne</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19950715</creationdate><title>The crystal structure of the catalytic domain of human urokinase-type plasminogen activator</title><author>Spraggon, Glen ; Phillips, Christopher ; Nowak, Ursula K ; Ponting, Christopher P ; Saunders, Derek ; Dobson, Christopher M ; Stuart, David I ; Jones, E.Yvonne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-386a3937fa256655e0cc8599b54545759ed7e363b2d8b95057de7012fc5fadfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Chymotrypsin - chemistry</topic><topic>Crystallography, X-Ray</topic><topic>fibrinolysis</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>inhibitor–protein interaction</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Sequence Homology, Amino Acid</topic><topic>serine protease</topic><topic>Thrombin - chemistry</topic><topic>Urokinase-Type Plasminogen Activator - biosynthesis</topic><topic>Urokinase-Type Plasminogen Activator - chemistry</topic><topic>Urokinase-Type Plasminogen Activator - isolation &amp; purification</topic><topic>variable regions</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spraggon, Glen</creatorcontrib><creatorcontrib>Phillips, Christopher</creatorcontrib><creatorcontrib>Nowak, Ursula K</creatorcontrib><creatorcontrib>Ponting, Christopher P</creatorcontrib><creatorcontrib>Saunders, Derek</creatorcontrib><creatorcontrib>Dobson, Christopher M</creatorcontrib><creatorcontrib>Stuart, David I</creatorcontrib><creatorcontrib>Jones, E.Yvonne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spraggon, Glen</au><au>Phillips, Christopher</au><au>Nowak, Ursula K</au><au>Ponting, Christopher P</au><au>Saunders, Derek</au><au>Dobson, Christopher M</au><au>Stuart, David I</au><au>Jones, E.Yvonne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The crystal structure of the catalytic domain of human urokinase-type plasminogen activator</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>1995-07-15</date><risdate>1995</risdate><volume>3</volume><issue>7</issue><spage>681</spage><epage>691</epage><pages>681-691</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Background: Urokinase-type plasminogen activator (u-PA) promotes fibrinolysis by catalyzing the conversion of plasminogen to the active protease plasmin via the cleavage of a peptide bond. When localized to the external cell surface it contributes to tissue remodelling and cellular migration; inhibition of its activity impedes the spread of cancer. u-PA has three domains: an N-terminal receptor-binding growth factor domain, a central kringle domain and a C-terminal catalytic protease domain. The biological roles of the fibrinolytic enzymes render them therapeutic targets, however, until now no structure of the protease domain has been available. Solution of the structure of the u-PA serine protease was undertaken to provide such data. Results The crystal structure of the catalytic domain of recombinant, non-glycosylated human u-PA, complexed with the inhibitor Glu–Gly–Arg chloromethyl ketone (EGRcmk), has been determined at a nominal resolution of 2.5 å and refined to a crystallographic R-factor of 22.4 % on all data (20.4 % on data &gt;3 σ). The enzyme has the expected topology of a trypsin-like serine protease. Conclusion The enzyme has an S1 specificity pocket similar to that of trypsin, a restricted, less accessible, hydrophobic S2 pocket and a solvent-accessible S3 pocket which is capable of accommodating a wide range of residues. The EGRcmk inhibitor binds covalently at the active site to form a tetrahedral hemiketal structure. Although the overall structure is similar to that of homologous serine proteases, at six positions insertions of extra residues in loop regions create unique surface areas. One of these loop regions is highly mobile despite being anchored by the disulphide bridge which is characteristic of a small subset of serine proteases namely tissuetype plasminogen activator, Factor XII and Complement Factor I.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>8591045</pmid><doi>10.1016/S0969-2126(01)00203-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-2126
ispartof Structure (London), 1995-07, Vol.3 (7), p.681-691
issn 0969-2126
1878-4186
language eng
recordid cdi_proquest_miscellaneous_77533931
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Binding Sites
Chymotrypsin - chemistry
Crystallography, X-Ray
fibrinolysis
Glycosylation
Humans
inhibitor–protein interaction
Models, Molecular
Molecular Sequence Data
Protein Conformation
Protein Structure, Secondary
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Recombinant Proteins - isolation & purification
Sequence Homology, Amino Acid
serine protease
Thrombin - chemistry
Urokinase-Type Plasminogen Activator - biosynthesis
Urokinase-Type Plasminogen Activator - chemistry
Urokinase-Type Plasminogen Activator - isolation & purification
variable regions
X-ray crystallography
title The crystal structure of the catalytic domain of human urokinase-type plasminogen activator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20crystal%20structure%20of%20the%20catalytic%20domain%20of%20human%20urokinase-type%20plasminogen%20activator&rft.jtitle=Structure%20(London)&rft.au=Spraggon,%20Glen&rft.date=1995-07-15&rft.volume=3&rft.issue=7&rft.spage=681&rft.epage=691&rft.pages=681-691&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/S0969-2126(01)00203-9&rft_dat=%3Cproquest_cross%3E77533931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77533931&rft_id=info:pmid/8591045&rft_els_id=S0969212601002039&rfr_iscdi=true