Morphology of ventral epidermis of Rana catesbeiana during metamorphosis
A detailed morphological examination of the bullfrog tadpole ventral epidermis and changes in structure that occur during metamorphosis has not been done. Knowledge of this is crucial to interpretation of physiological studies such as those dealing with development of transepithelial Na+ transport....
Gespeichert in:
Veröffentlicht in: | The Anatomical record 1987-03, Vol.217 (3), p.305-317 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A detailed morphological examination of the bullfrog tadpole ventral epidermis and changes in structure that occur during metamorphosis has not been done. Knowledge of this is crucial to interpretation of physiological studies such as those dealing with development of transepithelial Na+ transport. Examination of tadpole epidermis with light microscopy reveals the presence of three different cell types: apical, basal, and skein. This epidermal morphology is constant until Taylor and Kollros (Anat. Rec. 94:7–23, 1946) stage 19 when degeneration of apical cells is noted. Stages 20 and 21 are characterized by rapid proliferation of basal cells and development of a true stratum germinativum together with the disappearance of other tadpole cell types. By stage 22, epidermal morphology is similar to that of the adult frog. Studies with the electron microscope reveal that as the proliferation proceeds during metamorphosis, the skein cells, at stage 20, differentiate to form the apical border of the skin. The development of the adult frog cell phenotype appears to mimic the cellular differentiation that occurs in the adult epidermis with the cells first developing into progranular cells in the intermediate stratum of the skin and then progressing to granular cells in the outermost living cell layer. The granular cells then undergo cornification to form the stratum corneum. Mitochondria rich cells are not seen in the developing epidermis until stage 21. These observations, when considered with previous results from Na+ transport studies (Hillyard et al.: Biochim. Biophys. Acta 692:455–461, 1982), suggest that both the physiological differentiation and morphological differentiation are simultaneous events. |
---|---|
ISSN: | 0003-276X 1097-0185 |
DOI: | 10.1002/ar.1092170310 |