Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map
Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell...
Gespeichert in:
Veröffentlicht in: | Nature genetics 1995-08, Vol.10 (4), p.415-423 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 423 |
---|---|
container_issue | 4 |
container_start_page | 415 |
container_title | Nature genetics |
container_volume | 10 |
creator | Berry, Rebecca Stevens, T.J. Walter, Nicole A.R. Wilcox, Andrea S. Rubano, Todd Hopkins, Janet A. Weber, James Goold, Richard Soares, Marcelo Bento Sikela, James M. |
description | Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell hybrids to generate regional gene mapping data. Employing this approach, we have mapped 318 cDNAs, representing 308 human genes. Ninety–two of these mapped to regions implicated in human genetic diseases, identifying them as candidate genes. Extension of this strategy has the potential to result in virtually every human gene having, at its 3′ end, its own associated STS, with each STS in turn specifying both a corresponding genomic clone and a specific regional location in the genome. |
doi_str_mv | 10.1038/ng0895-415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77505088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16859211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-4509884d4e418f06e87e92388f624e92e402a83ff41df05caa096e2e2a690e013</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoPkY37oUsRHxQvWmTNFnK4AsEF-q6xPamVqbtmNsu3Pkf_If-EjPM4EpwlUPOx7mXexjbF3AuIDMXXQ3GqkQKtca2hZI6Ebkw61GDFomETG-xHaI3ACElmE22mescpBXb7OEGO_z-_HpxhBUnfB-xKxcfg6trrKKgZkDix49Pj3TCHfHhFXmkG-K-D9zx17F1Ha9jDG_dfJdteDcj3Fu9E_Z8ffU0vU3uH27uppf3SSnBDolUYI2RlUQpjAeNJkebZsZ4ncqoUELqTOa9FJUHVToHVmOKqdMWEEQ2YUfL3Hno4840FG1DJc5mrsN-pCLPFSgw5l9QWKNkptT_oDbKpmIx-nQJlqEnCuiLeWhaFz4KAcWij2LZRxH7iPDBKnV8abH6RVcFRP9w5Tsq3cwH15UN_WKZFrmOh5mwsyVG0elqDMVbP4YuXvivoT_1maBm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16859211</pqid></control><display><type>article</type><title>Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Berry, Rebecca ; Stevens, T.J. ; Walter, Nicole A.R. ; Wilcox, Andrea S. ; Rubano, Todd ; Hopkins, Janet A. ; Weber, James ; Goold, Richard ; Soares, Marcelo Bento ; Sikela, James M.</creator><creatorcontrib>Berry, Rebecca ; Stevens, T.J. ; Walter, Nicole A.R. ; Wilcox, Andrea S. ; Rubano, Todd ; Hopkins, Janet A. ; Weber, James ; Goold, Richard ; Soares, Marcelo Bento ; Sikela, James M.</creatorcontrib><description>Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell hybrids to generate regional gene mapping data. Employing this approach, we have mapped 318 cDNAs, representing 308 human genes. Ninety–two of these mapped to regions implicated in human genetic diseases, identifying them as candidate genes. Extension of this strategy has the potential to result in virtually every human gene having, at its 3′ end, its own associated STS, with each STS in turn specifying both a corresponding genomic clone and a specific regional location in the genome.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng0895-415</identifier><identifier>PMID: 7670491</identifier><identifier>CODEN: NGENEC</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Animal Genetics and Genomics ; Animals ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Cancer Research ; Chromosome Mapping - methods ; Chromosomes, Artificial, Yeast ; Classical genetics, quantitative genetics, hybrids ; Fundamental and applied biological sciences. Psychology ; Gene Function ; Genetics of eukaryotes. Biological and molecular evolution ; Genome, Human ; Human ; Human Genetics ; Humans ; Hybrid Cells ; Polymerase Chain Reaction ; Rodentia ; Sequence Tagged Sites</subject><ispartof>Nature genetics, 1995-08, Vol.10 (4), p.415-423</ispartof><rights>Springer Nature America, Inc. 1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-4509884d4e418f06e87e92388f624e92e402a83ff41df05caa096e2e2a690e013</citedby><cites>FETCH-LOGICAL-c409t-4509884d4e418f06e87e92388f624e92e402a83ff41df05caa096e2e2a690e013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng0895-415$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng0895-415$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3617692$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7670491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berry, Rebecca</creatorcontrib><creatorcontrib>Stevens, T.J.</creatorcontrib><creatorcontrib>Walter, Nicole A.R.</creatorcontrib><creatorcontrib>Wilcox, Andrea S.</creatorcontrib><creatorcontrib>Rubano, Todd</creatorcontrib><creatorcontrib>Hopkins, Janet A.</creatorcontrib><creatorcontrib>Weber, James</creatorcontrib><creatorcontrib>Goold, Richard</creatorcontrib><creatorcontrib>Soares, Marcelo Bento</creatorcontrib><creatorcontrib>Sikela, James M.</creatorcontrib><title>Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell hybrids to generate regional gene mapping data. Employing this approach, we have mapped 318 cDNAs, representing 308 human genes. Ninety–two of these mapped to regions implicated in human genetic diseases, identifying them as candidate genes. Extension of this strategy has the potential to result in virtually every human gene having, at its 3′ end, its own associated STS, with each STS in turn specifying both a corresponding genomic clone and a specific regional location in the genome.</description><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Cancer Research</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosomes, Artificial, Yeast</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Function</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome, Human</subject><subject>Human</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hybrid Cells</subject><subject>Polymerase Chain Reaction</subject><subject>Rodentia</subject><subject>Sequence Tagged Sites</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMoPkY37oUsRHxQvWmTNFnK4AsEF-q6xPamVqbtmNsu3Pkf_If-EjPM4EpwlUPOx7mXexjbF3AuIDMXXQ3GqkQKtca2hZI6Ebkw61GDFomETG-xHaI3ACElmE22mescpBXb7OEGO_z-_HpxhBUnfB-xKxcfg6trrKKgZkDix49Pj3TCHfHhFXmkG-K-D9zx17F1Ha9jDG_dfJdteDcj3Fu9E_Z8ffU0vU3uH27uppf3SSnBDolUYI2RlUQpjAeNJkebZsZ4ncqoUELqTOa9FJUHVToHVmOKqdMWEEQ2YUfL3Hno4840FG1DJc5mrsN-pCLPFSgw5l9QWKNkptT_oDbKpmIx-nQJlqEnCuiLeWhaFz4KAcWij2LZRxH7iPDBKnV8abH6RVcFRP9w5Tsq3cwH15UN_WKZFrmOh5mwsyVG0elqDMVbP4YuXvivoT_1maBm</recordid><startdate>19950801</startdate><enddate>19950801</enddate><creator>Berry, Rebecca</creator><creator>Stevens, T.J.</creator><creator>Walter, Nicole A.R.</creator><creator>Wilcox, Andrea S.</creator><creator>Rubano, Todd</creator><creator>Hopkins, Janet A.</creator><creator>Weber, James</creator><creator>Goold, Richard</creator><creator>Soares, Marcelo Bento</creator><creator>Sikela, James M.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T3</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19950801</creationdate><title>Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map</title><author>Berry, Rebecca ; Stevens, T.J. ; Walter, Nicole A.R. ; Wilcox, Andrea S. ; Rubano, Todd ; Hopkins, Janet A. ; Weber, James ; Goold, Richard ; Soares, Marcelo Bento ; Sikela, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-4509884d4e418f06e87e92388f624e92e402a83ff41df05caa096e2e2a690e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Cancer Research</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosomes, Artificial, Yeast</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Function</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome, Human</topic><topic>Human</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hybrid Cells</topic><topic>Polymerase Chain Reaction</topic><topic>Rodentia</topic><topic>Sequence Tagged Sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berry, Rebecca</creatorcontrib><creatorcontrib>Stevens, T.J.</creatorcontrib><creatorcontrib>Walter, Nicole A.R.</creatorcontrib><creatorcontrib>Wilcox, Andrea S.</creatorcontrib><creatorcontrib>Rubano, Todd</creatorcontrib><creatorcontrib>Hopkins, Janet A.</creatorcontrib><creatorcontrib>Weber, James</creatorcontrib><creatorcontrib>Goold, Richard</creatorcontrib><creatorcontrib>Soares, Marcelo Bento</creatorcontrib><creatorcontrib>Sikela, James M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Human Genome Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berry, Rebecca</au><au>Stevens, T.J.</au><au>Walter, Nicole A.R.</au><au>Wilcox, Andrea S.</au><au>Rubano, Todd</au><au>Hopkins, Janet A.</au><au>Weber, James</au><au>Goold, Richard</au><au>Soares, Marcelo Bento</au><au>Sikela, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>1995-08-01</date><risdate>1995</risdate><volume>10</volume><issue>4</issue><spage>415</spage><epage>423</epage><pages>415-423</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><coden>NGENEC</coden><abstract>Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell hybrids to generate regional gene mapping data. Employing this approach, we have mapped 318 cDNAs, representing 308 human genes. Ninety–two of these mapped to regions implicated in human genetic diseases, identifying them as candidate genes. Extension of this strategy has the potential to result in virtually every human gene having, at its 3′ end, its own associated STS, with each STS in turn specifying both a corresponding genomic clone and a specific regional location in the genome.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>7670491</pmid><doi>10.1038/ng0895-415</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 1995-08, Vol.10 (4), p.415-423 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_77505088 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | Agriculture Animal Genetics and Genomics Animals Biological and medical sciences Biomedical and Life Sciences Biomedicine Brain Cancer Research Chromosome Mapping - methods Chromosomes, Artificial, Yeast Classical genetics, quantitative genetics, hybrids Fundamental and applied biological sciences. Psychology Gene Function Genetics of eukaryotes. Biological and molecular evolution Genome, Human Human Human Genetics Humans Hybrid Cells Polymerase Chain Reaction Rodentia Sequence Tagged Sites |
title | Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%E2%80%93based%20sequence%E2%80%93tagged%E2%80%93sites%20(STSs)%20as%20the%20basis%20for%20a%20human%20gene%20map&rft.jtitle=Nature%20genetics&rft.au=Berry,%20Rebecca&rft.date=1995-08-01&rft.volume=10&rft.issue=4&rft.spage=415&rft.epage=423&rft.pages=415-423&rft.issn=1061-4036&rft.eissn=1546-1718&rft.coden=NGENEC&rft_id=info:doi/10.1038/ng0895-415&rft_dat=%3Cproquest_cross%3E16859211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16859211&rft_id=info:pmid/7670491&rfr_iscdi=true |