Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map

Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 1995-08, Vol.10 (4), p.415-423
Hauptverfasser: Berry, Rebecca, Stevens, T.J., Walter, Nicole A.R., Wilcox, Andrea S., Rubano, Todd, Hopkins, Janet A., Weber, James, Goold, Richard, Soares, Marcelo Bento, Sikela, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 4
container_start_page 415
container_title Nature genetics
container_volume 10
creator Berry, Rebecca
Stevens, T.J.
Walter, Nicole A.R.
Wilcox, Andrea S.
Rubano, Todd
Hopkins, Janet A.
Weber, James
Goold, Richard
Soares, Marcelo Bento
Sikela, James M.
description Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell hybrids to generate regional gene mapping data. Employing this approach, we have mapped 318 cDNAs, representing 308 human genes. Ninety–two of these mapped to regions implicated in human genetic diseases, identifying them as candidate genes. Extension of this strategy has the potential to result in virtually every human gene having, at its 3′ end, its own associated STS, with each STS in turn specifying both a corresponding genomic clone and a specific regional location in the genome.
doi_str_mv 10.1038/ng0895-415
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77505088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16859211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-4509884d4e418f06e87e92388f624e92e402a83ff41df05caa096e2e2a690e013</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoPkY37oUsRHxQvWmTNFnK4AsEF-q6xPamVqbtmNsu3Pkf_If-EjPM4EpwlUPOx7mXexjbF3AuIDMXXQ3GqkQKtca2hZI6Ebkw61GDFomETG-xHaI3ACElmE22mescpBXb7OEGO_z-_HpxhBUnfB-xKxcfg6trrKKgZkDix49Pj3TCHfHhFXmkG-K-D9zx17F1Ha9jDG_dfJdteDcj3Fu9E_Z8ffU0vU3uH27uppf3SSnBDolUYI2RlUQpjAeNJkebZsZ4ncqoUELqTOa9FJUHVToHVmOKqdMWEEQ2YUfL3Hno4840FG1DJc5mrsN-pCLPFSgw5l9QWKNkptT_oDbKpmIx-nQJlqEnCuiLeWhaFz4KAcWij2LZRxH7iPDBKnV8abH6RVcFRP9w5Tsq3cwH15UN_WKZFrmOh5mwsyVG0elqDMVbP4YuXvivoT_1maBm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16859211</pqid></control><display><type>article</type><title>Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Berry, Rebecca ; Stevens, T.J. ; Walter, Nicole A.R. ; Wilcox, Andrea S. ; Rubano, Todd ; Hopkins, Janet A. ; Weber, James ; Goold, Richard ; Soares, Marcelo Bento ; Sikela, James M.</creator><creatorcontrib>Berry, Rebecca ; Stevens, T.J. ; Walter, Nicole A.R. ; Wilcox, Andrea S. ; Rubano, Todd ; Hopkins, Janet A. ; Weber, James ; Goold, Richard ; Soares, Marcelo Bento ; Sikela, James M.</creatorcontrib><description>Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell hybrids to generate regional gene mapping data. Employing this approach, we have mapped 318 cDNAs, representing 308 human genes. Ninety–two of these mapped to regions implicated in human genetic diseases, identifying them as candidate genes. Extension of this strategy has the potential to result in virtually every human gene having, at its 3′ end, its own associated STS, with each STS in turn specifying both a corresponding genomic clone and a specific regional location in the genome.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng0895-415</identifier><identifier>PMID: 7670491</identifier><identifier>CODEN: NGENEC</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Animal Genetics and Genomics ; Animals ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Cancer Research ; Chromosome Mapping - methods ; Chromosomes, Artificial, Yeast ; Classical genetics, quantitative genetics, hybrids ; Fundamental and applied biological sciences. Psychology ; Gene Function ; Genetics of eukaryotes. Biological and molecular evolution ; Genome, Human ; Human ; Human Genetics ; Humans ; Hybrid Cells ; Polymerase Chain Reaction ; Rodentia ; Sequence Tagged Sites</subject><ispartof>Nature genetics, 1995-08, Vol.10 (4), p.415-423</ispartof><rights>Springer Nature America, Inc. 1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-4509884d4e418f06e87e92388f624e92e402a83ff41df05caa096e2e2a690e013</citedby><cites>FETCH-LOGICAL-c409t-4509884d4e418f06e87e92388f624e92e402a83ff41df05caa096e2e2a690e013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng0895-415$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng0895-415$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3617692$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7670491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berry, Rebecca</creatorcontrib><creatorcontrib>Stevens, T.J.</creatorcontrib><creatorcontrib>Walter, Nicole A.R.</creatorcontrib><creatorcontrib>Wilcox, Andrea S.</creatorcontrib><creatorcontrib>Rubano, Todd</creatorcontrib><creatorcontrib>Hopkins, Janet A.</creatorcontrib><creatorcontrib>Weber, James</creatorcontrib><creatorcontrib>Goold, Richard</creatorcontrib><creatorcontrib>Soares, Marcelo Bento</creatorcontrib><creatorcontrib>Sikela, James M.</creatorcontrib><title>Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell hybrids to generate regional gene mapping data. Employing this approach, we have mapped 318 cDNAs, representing 308 human genes. Ninety–two of these mapped to regions implicated in human genetic diseases, identifying them as candidate genes. Extension of this strategy has the potential to result in virtually every human gene having, at its 3′ end, its own associated STS, with each STS in turn specifying both a corresponding genomic clone and a specific regional location in the genome.</description><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Cancer Research</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosomes, Artificial, Yeast</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Function</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome, Human</subject><subject>Human</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hybrid Cells</subject><subject>Polymerase Chain Reaction</subject><subject>Rodentia</subject><subject>Sequence Tagged Sites</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMoPkY37oUsRHxQvWmTNFnK4AsEF-q6xPamVqbtmNsu3Pkf_If-EjPM4EpwlUPOx7mXexjbF3AuIDMXXQ3GqkQKtca2hZI6Ebkw61GDFomETG-xHaI3ACElmE22mescpBXb7OEGO_z-_HpxhBUnfB-xKxcfg6trrKKgZkDix49Pj3TCHfHhFXmkG-K-D9zx17F1Ha9jDG_dfJdteDcj3Fu9E_Z8ffU0vU3uH27uppf3SSnBDolUYI2RlUQpjAeNJkebZsZ4ncqoUELqTOa9FJUHVToHVmOKqdMWEEQ2YUfL3Hno4840FG1DJc5mrsN-pCLPFSgw5l9QWKNkptT_oDbKpmIx-nQJlqEnCuiLeWhaFz4KAcWij2LZRxH7iPDBKnV8abH6RVcFRP9w5Tsq3cwH15UN_WKZFrmOh5mwsyVG0elqDMVbP4YuXvivoT_1maBm</recordid><startdate>19950801</startdate><enddate>19950801</enddate><creator>Berry, Rebecca</creator><creator>Stevens, T.J.</creator><creator>Walter, Nicole A.R.</creator><creator>Wilcox, Andrea S.</creator><creator>Rubano, Todd</creator><creator>Hopkins, Janet A.</creator><creator>Weber, James</creator><creator>Goold, Richard</creator><creator>Soares, Marcelo Bento</creator><creator>Sikela, James M.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T3</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19950801</creationdate><title>Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map</title><author>Berry, Rebecca ; Stevens, T.J. ; Walter, Nicole A.R. ; Wilcox, Andrea S. ; Rubano, Todd ; Hopkins, Janet A. ; Weber, James ; Goold, Richard ; Soares, Marcelo Bento ; Sikela, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-4509884d4e418f06e87e92388f624e92e402a83ff41df05caa096e2e2a690e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Cancer Research</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosomes, Artificial, Yeast</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Function</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome, Human</topic><topic>Human</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hybrid Cells</topic><topic>Polymerase Chain Reaction</topic><topic>Rodentia</topic><topic>Sequence Tagged Sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berry, Rebecca</creatorcontrib><creatorcontrib>Stevens, T.J.</creatorcontrib><creatorcontrib>Walter, Nicole A.R.</creatorcontrib><creatorcontrib>Wilcox, Andrea S.</creatorcontrib><creatorcontrib>Rubano, Todd</creatorcontrib><creatorcontrib>Hopkins, Janet A.</creatorcontrib><creatorcontrib>Weber, James</creatorcontrib><creatorcontrib>Goold, Richard</creatorcontrib><creatorcontrib>Soares, Marcelo Bento</creatorcontrib><creatorcontrib>Sikela, James M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Human Genome Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berry, Rebecca</au><au>Stevens, T.J.</au><au>Walter, Nicole A.R.</au><au>Wilcox, Andrea S.</au><au>Rubano, Todd</au><au>Hopkins, Janet A.</au><au>Weber, James</au><au>Goold, Richard</au><au>Soares, Marcelo Bento</au><au>Sikela, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>1995-08-01</date><risdate>1995</risdate><volume>10</volume><issue>4</issue><spage>415</spage><epage>423</epage><pages>415-423</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><coden>NGENEC</coden><abstract>Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell hybrids to generate regional gene mapping data. Employing this approach, we have mapped 318 cDNAs, representing 308 human genes. Ninety–two of these mapped to regions implicated in human genetic diseases, identifying them as candidate genes. Extension of this strategy has the potential to result in virtually every human gene having, at its 3′ end, its own associated STS, with each STS in turn specifying both a corresponding genomic clone and a specific regional location in the genome.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>7670491</pmid><doi>10.1038/ng0895-415</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 1995-08, Vol.10 (4), p.415-423
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_77505088
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Agriculture
Animal Genetics and Genomics
Animals
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Brain
Cancer Research
Chromosome Mapping - methods
Chromosomes, Artificial, Yeast
Classical genetics, quantitative genetics, hybrids
Fundamental and applied biological sciences. Psychology
Gene Function
Genetics of eukaryotes. Biological and molecular evolution
Genome, Human
Human
Human Genetics
Humans
Hybrid Cells
Polymerase Chain Reaction
Rodentia
Sequence Tagged Sites
title Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%E2%80%93based%20sequence%E2%80%93tagged%E2%80%93sites%20(STSs)%20as%20the%20basis%20for%20a%20human%20gene%20map&rft.jtitle=Nature%20genetics&rft.au=Berry,%20Rebecca&rft.date=1995-08-01&rft.volume=10&rft.issue=4&rft.spage=415&rft.epage=423&rft.pages=415-423&rft.issn=1061-4036&rft.eissn=1546-1718&rft.coden=NGENEC&rft_id=info:doi/10.1038/ng0895-415&rft_dat=%3Cproquest_cross%3E16859211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16859211&rft_id=info:pmid/7670491&rfr_iscdi=true