Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)
We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pa...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 1995-07, Vol.12 (4), p.533-545 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 545 |
---|---|
container_issue | 4 |
container_start_page | 533 |
container_title | Molecular biology and evolution |
container_volume | 12 |
creator | Turmel, M Côté, V Otis, C Mercier, J P Gray, M W Lonergan, K M Lemieux, C |
description | We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pallidostigmatica contains a group I intron (CpLSU.2) encoding a site-specific endonuclease (I-CpaI). This intron is inserted at the identical site (corresponding to position 1931-1932 of the Escherichia coli 23S rRNA sequence) as a group I intron (AcLSU.m1) in the mitochondrial LSU rRNA gene of the amoeboid protozoon Acanthamoeba castellanii. The CpLSU.2 intron displays a remarkable degree of nucleotide similarity in both primary sequence and secondary structure to the AcLSU.m1 intron; moreover, the Acanthamoeba intron contains an ORF in the same location within its secondary structure as the CpLSU.2 ORF and shares with it a strikingly high level of amino acid similarity (65%; 42% identity). A comprehensive survey of intron distribution at site 1931 of the chloroplast LSU rRNA gene reveals a rather restricted occurrence within the polyphyletic genus Chlamydomonas, with no evidence of this intron among a number of non-Chlamydomonad green algae surveyed, nor in land plants. A parallel survey of homologues of a previously described and similar intron/ORF pair (C. reinhardtii chloroplast CrLSU/A. castellanii mitochondrial AcLSU.m3) also shows a restricted occurrence of this intron (site 2593) among chloroplasts, although the intron distribution is somewhat broader than that observed at site 1931, with site-2593 introns appearing in several green algal branches outside of the Chlamydomonas lineage. The available data, while not definitive, are most consistent with a relatively recent horizontal transfer of both site-1931 and site-2593 introns (and their contained ORFs) between the chloroplast of a Chlamydomonas-type organism and the mitochondrion of an Acanthamoeba-like organism, probably in the direction chloroplast to mitochondrion. The data also suggest that both introns could have been acquired in a single event. |
doi_str_mv | 10.1093/oxfordjournals.molbev.a040234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77481091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16837879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-dcf4bf7616209f73d5bc312bd78de7ee136369c8daaf8dad3827de56fcd0ad953</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMo4zj6E4RsFF10TCZt0i5ciDgqCILouqR5jJU2tyapj62_3MgMgis3N5dwTs7N_RA6omROScXO4MOC1y8weie7MO-ha8zbXJKcLFi-haa0YCKjglbbaEpE6nPCyl20F8ILITTPOZ-gieBFRSiZoq-rN-jG2IKT_hNHL12wxmOw-P5hmSlwUbaudSu88jAO-Ba3LnpwATcmvhvjsG5tMhgXcRgbZbpu7KTHCvpB-tin-4BP1HMHHoZOhoil07hvI6hncNqn3NN9tGPTT8zB5pyhp-XV4-VNdnd_fXt5cZepnPCYaWXzxgpO-YJUVjBdNIrRRaNFqY0whjLOeKVKLaVNRbNyIbQpuFWaSF0VbIaO1-8OHl5HE2Ldt-FnYukMjKEWIi_Thum_QspLJkpRJeH5Wqg8hOCNrQff9mmRNSX1D6z6L6x6DavewEr-w03Q2PRG_7o3dNg36xWdfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16837879</pqid></control><display><type>article</type><title>Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><source>Oxford University Press Journals Digital Archive Legacy</source><creator>Turmel, M ; Côté, V ; Otis, C ; Mercier, J P ; Gray, M W ; Lonergan, K M ; Lemieux, C</creator><creatorcontrib>Turmel, M ; Côté, V ; Otis, C ; Mercier, J P ; Gray, M W ; Lonergan, K M ; Lemieux, C</creatorcontrib><description>We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pallidostigmatica contains a group I intron (CpLSU.2) encoding a site-specific endonuclease (I-CpaI). This intron is inserted at the identical site (corresponding to position 1931-1932 of the Escherichia coli 23S rRNA sequence) as a group I intron (AcLSU.m1) in the mitochondrial LSU rRNA gene of the amoeboid protozoon Acanthamoeba castellanii. The CpLSU.2 intron displays a remarkable degree of nucleotide similarity in both primary sequence and secondary structure to the AcLSU.m1 intron; moreover, the Acanthamoeba intron contains an ORF in the same location within its secondary structure as the CpLSU.2 ORF and shares with it a strikingly high level of amino acid similarity (65%; 42% identity). A comprehensive survey of intron distribution at site 1931 of the chloroplast LSU rRNA gene reveals a rather restricted occurrence within the polyphyletic genus Chlamydomonas, with no evidence of this intron among a number of non-Chlamydomonad green algae surveyed, nor in land plants. A parallel survey of homologues of a previously described and similar intron/ORF pair (C. reinhardtii chloroplast CrLSU/A. castellanii mitochondrial AcLSU.m3) also shows a restricted occurrence of this intron (site 2593) among chloroplasts, although the intron distribution is somewhat broader than that observed at site 1931, with site-2593 introns appearing in several green algal branches outside of the Chlamydomonas lineage. The available data, while not definitive, are most consistent with a relatively recent horizontal transfer of both site-1931 and site-2593 introns (and their contained ORFs) between the chloroplast of a Chlamydomonas-type organism and the mitochondrion of an Acanthamoeba-like organism, probably in the direction chloroplast to mitochondrion. The data also suggest that both introns could have been acquired in a single event.</description><identifier>ISSN: 0737-4038</identifier><identifier>ISSN: 1537-1719</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/oxfordjournals.molbev.a040234</identifier><identifier>PMID: 7659010</identifier><language>eng</language><publisher>United States</publisher><subject>Acanthamoeba - genetics ; Acanthamoeba castellanii ; Animals ; Base Sequence ; Biological Evolution ; Chlamydomonas - genetics ; Chlamydomonas pallidostigmatica ; Chlamydomonas reinhardtii ; Chloroplasts - genetics ; Deoxyribonucleases, Type I Site-Specific - genetics ; Deoxyribonucleases, Type I Site-Specific - metabolism ; DNA - metabolism ; Escherichia coli ; Freshwater ; Introns - genetics ; Mitochondria - genetics ; Molecular Sequence Data ; Open Reading Frames - genetics ; RNA, Protozoan - chemistry ; RNA, Protozoan - genetics ; RNA, Ribosomal - chemistry ; RNA, Ribosomal - genetics ; Sequence Homology, Nucleic Acid</subject><ispartof>Molecular biology and evolution, 1995-07, Vol.12 (4), p.533-545</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-dcf4bf7616209f73d5bc312bd78de7ee136369c8daaf8dad3827de56fcd0ad953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7659010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turmel, M</creatorcontrib><creatorcontrib>Côté, V</creatorcontrib><creatorcontrib>Otis, C</creatorcontrib><creatorcontrib>Mercier, J P</creatorcontrib><creatorcontrib>Gray, M W</creatorcontrib><creatorcontrib>Lonergan, K M</creatorcontrib><creatorcontrib>Lemieux, C</creatorcontrib><title>Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pallidostigmatica contains a group I intron (CpLSU.2) encoding a site-specific endonuclease (I-CpaI). This intron is inserted at the identical site (corresponding to position 1931-1932 of the Escherichia coli 23S rRNA sequence) as a group I intron (AcLSU.m1) in the mitochondrial LSU rRNA gene of the amoeboid protozoon Acanthamoeba castellanii. The CpLSU.2 intron displays a remarkable degree of nucleotide similarity in both primary sequence and secondary structure to the AcLSU.m1 intron; moreover, the Acanthamoeba intron contains an ORF in the same location within its secondary structure as the CpLSU.2 ORF and shares with it a strikingly high level of amino acid similarity (65%; 42% identity). A comprehensive survey of intron distribution at site 1931 of the chloroplast LSU rRNA gene reveals a rather restricted occurrence within the polyphyletic genus Chlamydomonas, with no evidence of this intron among a number of non-Chlamydomonad green algae surveyed, nor in land plants. A parallel survey of homologues of a previously described and similar intron/ORF pair (C. reinhardtii chloroplast CrLSU/A. castellanii mitochondrial AcLSU.m3) also shows a restricted occurrence of this intron (site 2593) among chloroplasts, although the intron distribution is somewhat broader than that observed at site 1931, with site-2593 introns appearing in several green algal branches outside of the Chlamydomonas lineage. The available data, while not definitive, are most consistent with a relatively recent horizontal transfer of both site-1931 and site-2593 introns (and their contained ORFs) between the chloroplast of a Chlamydomonas-type organism and the mitochondrion of an Acanthamoeba-like organism, probably in the direction chloroplast to mitochondrion. The data also suggest that both introns could have been acquired in a single event.</description><subject>Acanthamoeba - genetics</subject><subject>Acanthamoeba castellanii</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological Evolution</subject><subject>Chlamydomonas - genetics</subject><subject>Chlamydomonas pallidostigmatica</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chloroplasts - genetics</subject><subject>Deoxyribonucleases, Type I Site-Specific - genetics</subject><subject>Deoxyribonucleases, Type I Site-Specific - metabolism</subject><subject>DNA - metabolism</subject><subject>Escherichia coli</subject><subject>Freshwater</subject><subject>Introns - genetics</subject><subject>Mitochondria - genetics</subject><subject>Molecular Sequence Data</subject><subject>Open Reading Frames - genetics</subject><subject>RNA, Protozoan - chemistry</subject><subject>RNA, Protozoan - genetics</subject><subject>RNA, Ribosomal - chemistry</subject><subject>RNA, Ribosomal - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><issn>0737-4038</issn><issn>1537-1719</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMo4zj6E4RsFF10TCZt0i5ciDgqCILouqR5jJU2tyapj62_3MgMgis3N5dwTs7N_RA6omROScXO4MOC1y8weie7MO-ha8zbXJKcLFi-haa0YCKjglbbaEpE6nPCyl20F8ILITTPOZ-gieBFRSiZoq-rN-jG2IKT_hNHL12wxmOw-P5hmSlwUbaudSu88jAO-Ba3LnpwATcmvhvjsG5tMhgXcRgbZbpu7KTHCvpB-tin-4BP1HMHHoZOhoil07hvI6hncNqn3NN9tGPTT8zB5pyhp-XV4-VNdnd_fXt5cZepnPCYaWXzxgpO-YJUVjBdNIrRRaNFqY0whjLOeKVKLaVNRbNyIbQpuFWaSF0VbIaO1-8OHl5HE2Ldt-FnYukMjKEWIi_Thum_QspLJkpRJeH5Wqg8hOCNrQff9mmRNSX1D6z6L6x6DavewEr-w03Q2PRG_7o3dNg36xWdfw</recordid><startdate>19950701</startdate><enddate>19950701</enddate><creator>Turmel, M</creator><creator>Côté, V</creator><creator>Otis, C</creator><creator>Mercier, J P</creator><creator>Gray, M W</creator><creator>Lonergan, K M</creator><creator>Lemieux, C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19950701</creationdate><title>Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)</title><author>Turmel, M ; Côté, V ; Otis, C ; Mercier, J P ; Gray, M W ; Lonergan, K M ; Lemieux, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-dcf4bf7616209f73d5bc312bd78de7ee136369c8daaf8dad3827de56fcd0ad953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Acanthamoeba - genetics</topic><topic>Acanthamoeba castellanii</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological Evolution</topic><topic>Chlamydomonas - genetics</topic><topic>Chlamydomonas pallidostigmatica</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chloroplasts - genetics</topic><topic>Deoxyribonucleases, Type I Site-Specific - genetics</topic><topic>Deoxyribonucleases, Type I Site-Specific - metabolism</topic><topic>DNA - metabolism</topic><topic>Escherichia coli</topic><topic>Freshwater</topic><topic>Introns - genetics</topic><topic>Mitochondria - genetics</topic><topic>Molecular Sequence Data</topic><topic>Open Reading Frames - genetics</topic><topic>RNA, Protozoan - chemistry</topic><topic>RNA, Protozoan - genetics</topic><topic>RNA, Ribosomal - chemistry</topic><topic>RNA, Ribosomal - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turmel, M</creatorcontrib><creatorcontrib>Côté, V</creatorcontrib><creatorcontrib>Otis, C</creatorcontrib><creatorcontrib>Mercier, J P</creatorcontrib><creatorcontrib>Gray, M W</creatorcontrib><creatorcontrib>Lonergan, K M</creatorcontrib><creatorcontrib>Lemieux, C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turmel, M</au><au>Côté, V</au><au>Otis, C</au><au>Mercier, J P</au><au>Gray, M W</au><au>Lonergan, K M</au><au>Lemieux, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>1995-07-01</date><risdate>1995</risdate><volume>12</volume><issue>4</issue><spage>533</spage><epage>545</epage><pages>533-545</pages><issn>0737-4038</issn><issn>1537-1719</issn><eissn>1537-1719</eissn><abstract>We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pallidostigmatica contains a group I intron (CpLSU.2) encoding a site-specific endonuclease (I-CpaI). This intron is inserted at the identical site (corresponding to position 1931-1932 of the Escherichia coli 23S rRNA sequence) as a group I intron (AcLSU.m1) in the mitochondrial LSU rRNA gene of the amoeboid protozoon Acanthamoeba castellanii. The CpLSU.2 intron displays a remarkable degree of nucleotide similarity in both primary sequence and secondary structure to the AcLSU.m1 intron; moreover, the Acanthamoeba intron contains an ORF in the same location within its secondary structure as the CpLSU.2 ORF and shares with it a strikingly high level of amino acid similarity (65%; 42% identity). A comprehensive survey of intron distribution at site 1931 of the chloroplast LSU rRNA gene reveals a rather restricted occurrence within the polyphyletic genus Chlamydomonas, with no evidence of this intron among a number of non-Chlamydomonad green algae surveyed, nor in land plants. A parallel survey of homologues of a previously described and similar intron/ORF pair (C. reinhardtii chloroplast CrLSU/A. castellanii mitochondrial AcLSU.m3) also shows a restricted occurrence of this intron (site 2593) among chloroplasts, although the intron distribution is somewhat broader than that observed at site 1931, with site-2593 introns appearing in several green algal branches outside of the Chlamydomonas lineage. The available data, while not definitive, are most consistent with a relatively recent horizontal transfer of both site-1931 and site-2593 introns (and their contained ORFs) between the chloroplast of a Chlamydomonas-type organism and the mitochondrion of an Acanthamoeba-like organism, probably in the direction chloroplast to mitochondrion. The data also suggest that both introns could have been acquired in a single event.</abstract><cop>United States</cop><pmid>7659010</pmid><doi>10.1093/oxfordjournals.molbev.a040234</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 1995-07, Vol.12 (4), p.533-545 |
issn | 0737-4038 1537-1719 1537-1719 |
language | eng |
recordid | cdi_proquest_miscellaneous_77481091 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry; Oxford University Press Journals Digital Archive Legacy |
subjects | Acanthamoeba - genetics Acanthamoeba castellanii Animals Base Sequence Biological Evolution Chlamydomonas - genetics Chlamydomonas pallidostigmatica Chlamydomonas reinhardtii Chloroplasts - genetics Deoxyribonucleases, Type I Site-Specific - genetics Deoxyribonucleases, Type I Site-Specific - metabolism DNA - metabolism Escherichia coli Freshwater Introns - genetics Mitochondria - genetics Molecular Sequence Data Open Reading Frames - genetics RNA, Protozoan - chemistry RNA, Protozoan - genetics RNA, Ribosomal - chemistry RNA, Ribosomal - genetics Sequence Homology, Nucleic Acid |
title | Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20transfer%20of%20ORF-containing%20group%20I%20introns%20between%20different%20subcellular%20compartments%20(chloroplast%20and%20mitochondrion)&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Turmel,%20M&rft.date=1995-07-01&rft.volume=12&rft.issue=4&rft.spage=533&rft.epage=545&rft.pages=533-545&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/oxfordjournals.molbev.a040234&rft_dat=%3Cproquest_cross%3E16837879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16837879&rft_id=info:pmid/7659010&rfr_iscdi=true |