Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)

We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 1995-07, Vol.12 (4), p.533-545
Hauptverfasser: Turmel, M, Côté, V, Otis, C, Mercier, J P, Gray, M W, Lonergan, K M, Lemieux, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 545
container_issue 4
container_start_page 533
container_title Molecular biology and evolution
container_volume 12
creator Turmel, M
Côté, V
Otis, C
Mercier, J P
Gray, M W
Lonergan, K M
Lemieux, C
description We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pallidostigmatica contains a group I intron (CpLSU.2) encoding a site-specific endonuclease (I-CpaI). This intron is inserted at the identical site (corresponding to position 1931-1932 of the Escherichia coli 23S rRNA sequence) as a group I intron (AcLSU.m1) in the mitochondrial LSU rRNA gene of the amoeboid protozoon Acanthamoeba castellanii. The CpLSU.2 intron displays a remarkable degree of nucleotide similarity in both primary sequence and secondary structure to the AcLSU.m1 intron; moreover, the Acanthamoeba intron contains an ORF in the same location within its secondary structure as the CpLSU.2 ORF and shares with it a strikingly high level of amino acid similarity (65%; 42% identity). A comprehensive survey of intron distribution at site 1931 of the chloroplast LSU rRNA gene reveals a rather restricted occurrence within the polyphyletic genus Chlamydomonas, with no evidence of this intron among a number of non-Chlamydomonad green algae surveyed, nor in land plants. A parallel survey of homologues of a previously described and similar intron/ORF pair (C. reinhardtii chloroplast CrLSU/A. castellanii mitochondrial AcLSU.m3) also shows a restricted occurrence of this intron (site 2593) among chloroplasts, although the intron distribution is somewhat broader than that observed at site 1931, with site-2593 introns appearing in several green algal branches outside of the Chlamydomonas lineage. The available data, while not definitive, are most consistent with a relatively recent horizontal transfer of both site-1931 and site-2593 introns (and their contained ORFs) between the chloroplast of a Chlamydomonas-type organism and the mitochondrion of an Acanthamoeba-like organism, probably in the direction chloroplast to mitochondrion. The data also suggest that both introns could have been acquired in a single event.
doi_str_mv 10.1093/oxfordjournals.molbev.a040234
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77481091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16837879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-dcf4bf7616209f73d5bc312bd78de7ee136369c8daaf8dad3827de56fcd0ad953</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMo4zj6E4RsFF10TCZt0i5ciDgqCILouqR5jJU2tyapj62_3MgMgis3N5dwTs7N_RA6omROScXO4MOC1y8weie7MO-ha8zbXJKcLFi-haa0YCKjglbbaEpE6nPCyl20F8ILITTPOZ-gieBFRSiZoq-rN-jG2IKT_hNHL12wxmOw-P5hmSlwUbaudSu88jAO-Ba3LnpwATcmvhvjsG5tMhgXcRgbZbpu7KTHCvpB-tin-4BP1HMHHoZOhoil07hvI6hncNqn3NN9tGPTT8zB5pyhp-XV4-VNdnd_fXt5cZepnPCYaWXzxgpO-YJUVjBdNIrRRaNFqY0whjLOeKVKLaVNRbNyIbQpuFWaSF0VbIaO1-8OHl5HE2Ldt-FnYukMjKEWIi_Thum_QspLJkpRJeH5Wqg8hOCNrQff9mmRNSX1D6z6L6x6DavewEr-w03Q2PRG_7o3dNg36xWdfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16837879</pqid></control><display><type>article</type><title>Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><source>Oxford University Press Journals Digital Archive Legacy</source><creator>Turmel, M ; Côté, V ; Otis, C ; Mercier, J P ; Gray, M W ; Lonergan, K M ; Lemieux, C</creator><creatorcontrib>Turmel, M ; Côté, V ; Otis, C ; Mercier, J P ; Gray, M W ; Lonergan, K M ; Lemieux, C</creatorcontrib><description>We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pallidostigmatica contains a group I intron (CpLSU.2) encoding a site-specific endonuclease (I-CpaI). This intron is inserted at the identical site (corresponding to position 1931-1932 of the Escherichia coli 23S rRNA sequence) as a group I intron (AcLSU.m1) in the mitochondrial LSU rRNA gene of the amoeboid protozoon Acanthamoeba castellanii. The CpLSU.2 intron displays a remarkable degree of nucleotide similarity in both primary sequence and secondary structure to the AcLSU.m1 intron; moreover, the Acanthamoeba intron contains an ORF in the same location within its secondary structure as the CpLSU.2 ORF and shares with it a strikingly high level of amino acid similarity (65%; 42% identity). A comprehensive survey of intron distribution at site 1931 of the chloroplast LSU rRNA gene reveals a rather restricted occurrence within the polyphyletic genus Chlamydomonas, with no evidence of this intron among a number of non-Chlamydomonad green algae surveyed, nor in land plants. A parallel survey of homologues of a previously described and similar intron/ORF pair (C. reinhardtii chloroplast CrLSU/A. castellanii mitochondrial AcLSU.m3) also shows a restricted occurrence of this intron (site 2593) among chloroplasts, although the intron distribution is somewhat broader than that observed at site 1931, with site-2593 introns appearing in several green algal branches outside of the Chlamydomonas lineage. The available data, while not definitive, are most consistent with a relatively recent horizontal transfer of both site-1931 and site-2593 introns (and their contained ORFs) between the chloroplast of a Chlamydomonas-type organism and the mitochondrion of an Acanthamoeba-like organism, probably in the direction chloroplast to mitochondrion. The data also suggest that both introns could have been acquired in a single event.</description><identifier>ISSN: 0737-4038</identifier><identifier>ISSN: 1537-1719</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/oxfordjournals.molbev.a040234</identifier><identifier>PMID: 7659010</identifier><language>eng</language><publisher>United States</publisher><subject>Acanthamoeba - genetics ; Acanthamoeba castellanii ; Animals ; Base Sequence ; Biological Evolution ; Chlamydomonas - genetics ; Chlamydomonas pallidostigmatica ; Chlamydomonas reinhardtii ; Chloroplasts - genetics ; Deoxyribonucleases, Type I Site-Specific - genetics ; Deoxyribonucleases, Type I Site-Specific - metabolism ; DNA - metabolism ; Escherichia coli ; Freshwater ; Introns - genetics ; Mitochondria - genetics ; Molecular Sequence Data ; Open Reading Frames - genetics ; RNA, Protozoan - chemistry ; RNA, Protozoan - genetics ; RNA, Ribosomal - chemistry ; RNA, Ribosomal - genetics ; Sequence Homology, Nucleic Acid</subject><ispartof>Molecular biology and evolution, 1995-07, Vol.12 (4), p.533-545</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-dcf4bf7616209f73d5bc312bd78de7ee136369c8daaf8dad3827de56fcd0ad953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7659010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turmel, M</creatorcontrib><creatorcontrib>Côté, V</creatorcontrib><creatorcontrib>Otis, C</creatorcontrib><creatorcontrib>Mercier, J P</creatorcontrib><creatorcontrib>Gray, M W</creatorcontrib><creatorcontrib>Lonergan, K M</creatorcontrib><creatorcontrib>Lemieux, C</creatorcontrib><title>Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pallidostigmatica contains a group I intron (CpLSU.2) encoding a site-specific endonuclease (I-CpaI). This intron is inserted at the identical site (corresponding to position 1931-1932 of the Escherichia coli 23S rRNA sequence) as a group I intron (AcLSU.m1) in the mitochondrial LSU rRNA gene of the amoeboid protozoon Acanthamoeba castellanii. The CpLSU.2 intron displays a remarkable degree of nucleotide similarity in both primary sequence and secondary structure to the AcLSU.m1 intron; moreover, the Acanthamoeba intron contains an ORF in the same location within its secondary structure as the CpLSU.2 ORF and shares with it a strikingly high level of amino acid similarity (65%; 42% identity). A comprehensive survey of intron distribution at site 1931 of the chloroplast LSU rRNA gene reveals a rather restricted occurrence within the polyphyletic genus Chlamydomonas, with no evidence of this intron among a number of non-Chlamydomonad green algae surveyed, nor in land plants. A parallel survey of homologues of a previously described and similar intron/ORF pair (C. reinhardtii chloroplast CrLSU/A. castellanii mitochondrial AcLSU.m3) also shows a restricted occurrence of this intron (site 2593) among chloroplasts, although the intron distribution is somewhat broader than that observed at site 1931, with site-2593 introns appearing in several green algal branches outside of the Chlamydomonas lineage. The available data, while not definitive, are most consistent with a relatively recent horizontal transfer of both site-1931 and site-2593 introns (and their contained ORFs) between the chloroplast of a Chlamydomonas-type organism and the mitochondrion of an Acanthamoeba-like organism, probably in the direction chloroplast to mitochondrion. The data also suggest that both introns could have been acquired in a single event.</description><subject>Acanthamoeba - genetics</subject><subject>Acanthamoeba castellanii</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological Evolution</subject><subject>Chlamydomonas - genetics</subject><subject>Chlamydomonas pallidostigmatica</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chloroplasts - genetics</subject><subject>Deoxyribonucleases, Type I Site-Specific - genetics</subject><subject>Deoxyribonucleases, Type I Site-Specific - metabolism</subject><subject>DNA - metabolism</subject><subject>Escherichia coli</subject><subject>Freshwater</subject><subject>Introns - genetics</subject><subject>Mitochondria - genetics</subject><subject>Molecular Sequence Data</subject><subject>Open Reading Frames - genetics</subject><subject>RNA, Protozoan - chemistry</subject><subject>RNA, Protozoan - genetics</subject><subject>RNA, Ribosomal - chemistry</subject><subject>RNA, Ribosomal - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><issn>0737-4038</issn><issn>1537-1719</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMo4zj6E4RsFF10TCZt0i5ciDgqCILouqR5jJU2tyapj62_3MgMgis3N5dwTs7N_RA6omROScXO4MOC1y8weie7MO-ha8zbXJKcLFi-haa0YCKjglbbaEpE6nPCyl20F8ILITTPOZ-gieBFRSiZoq-rN-jG2IKT_hNHL12wxmOw-P5hmSlwUbaudSu88jAO-Ba3LnpwATcmvhvjsG5tMhgXcRgbZbpu7KTHCvpB-tin-4BP1HMHHoZOhoil07hvI6hncNqn3NN9tGPTT8zB5pyhp-XV4-VNdnd_fXt5cZepnPCYaWXzxgpO-YJUVjBdNIrRRaNFqY0whjLOeKVKLaVNRbNyIbQpuFWaSF0VbIaO1-8OHl5HE2Ldt-FnYukMjKEWIi_Thum_QspLJkpRJeH5Wqg8hOCNrQff9mmRNSX1D6z6L6x6DavewEr-w03Q2PRG_7o3dNg36xWdfw</recordid><startdate>19950701</startdate><enddate>19950701</enddate><creator>Turmel, M</creator><creator>Côté, V</creator><creator>Otis, C</creator><creator>Mercier, J P</creator><creator>Gray, M W</creator><creator>Lonergan, K M</creator><creator>Lemieux, C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19950701</creationdate><title>Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)</title><author>Turmel, M ; Côté, V ; Otis, C ; Mercier, J P ; Gray, M W ; Lonergan, K M ; Lemieux, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-dcf4bf7616209f73d5bc312bd78de7ee136369c8daaf8dad3827de56fcd0ad953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Acanthamoeba - genetics</topic><topic>Acanthamoeba castellanii</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological Evolution</topic><topic>Chlamydomonas - genetics</topic><topic>Chlamydomonas pallidostigmatica</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chloroplasts - genetics</topic><topic>Deoxyribonucleases, Type I Site-Specific - genetics</topic><topic>Deoxyribonucleases, Type I Site-Specific - metabolism</topic><topic>DNA - metabolism</topic><topic>Escherichia coli</topic><topic>Freshwater</topic><topic>Introns - genetics</topic><topic>Mitochondria - genetics</topic><topic>Molecular Sequence Data</topic><topic>Open Reading Frames - genetics</topic><topic>RNA, Protozoan - chemistry</topic><topic>RNA, Protozoan - genetics</topic><topic>RNA, Ribosomal - chemistry</topic><topic>RNA, Ribosomal - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turmel, M</creatorcontrib><creatorcontrib>Côté, V</creatorcontrib><creatorcontrib>Otis, C</creatorcontrib><creatorcontrib>Mercier, J P</creatorcontrib><creatorcontrib>Gray, M W</creatorcontrib><creatorcontrib>Lonergan, K M</creatorcontrib><creatorcontrib>Lemieux, C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turmel, M</au><au>Côté, V</au><au>Otis, C</au><au>Mercier, J P</au><au>Gray, M W</au><au>Lonergan, K M</au><au>Lemieux, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>1995-07-01</date><risdate>1995</risdate><volume>12</volume><issue>4</issue><spage>533</spage><epage>545</epage><pages>533-545</pages><issn>0737-4038</issn><issn>1537-1719</issn><eissn>1537-1719</eissn><abstract>We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pallidostigmatica contains a group I intron (CpLSU.2) encoding a site-specific endonuclease (I-CpaI). This intron is inserted at the identical site (corresponding to position 1931-1932 of the Escherichia coli 23S rRNA sequence) as a group I intron (AcLSU.m1) in the mitochondrial LSU rRNA gene of the amoeboid protozoon Acanthamoeba castellanii. The CpLSU.2 intron displays a remarkable degree of nucleotide similarity in both primary sequence and secondary structure to the AcLSU.m1 intron; moreover, the Acanthamoeba intron contains an ORF in the same location within its secondary structure as the CpLSU.2 ORF and shares with it a strikingly high level of amino acid similarity (65%; 42% identity). A comprehensive survey of intron distribution at site 1931 of the chloroplast LSU rRNA gene reveals a rather restricted occurrence within the polyphyletic genus Chlamydomonas, with no evidence of this intron among a number of non-Chlamydomonad green algae surveyed, nor in land plants. A parallel survey of homologues of a previously described and similar intron/ORF pair (C. reinhardtii chloroplast CrLSU/A. castellanii mitochondrial AcLSU.m3) also shows a restricted occurrence of this intron (site 2593) among chloroplasts, although the intron distribution is somewhat broader than that observed at site 1931, with site-2593 introns appearing in several green algal branches outside of the Chlamydomonas lineage. The available data, while not definitive, are most consistent with a relatively recent horizontal transfer of both site-1931 and site-2593 introns (and their contained ORFs) between the chloroplast of a Chlamydomonas-type organism and the mitochondrion of an Acanthamoeba-like organism, probably in the direction chloroplast to mitochondrion. The data also suggest that both introns could have been acquired in a single event.</abstract><cop>United States</cop><pmid>7659010</pmid><doi>10.1093/oxfordjournals.molbev.a040234</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 1995-07, Vol.12 (4), p.533-545
issn 0737-4038
1537-1719
1537-1719
language eng
recordid cdi_proquest_miscellaneous_77481091
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry; Oxford University Press Journals Digital Archive Legacy
subjects Acanthamoeba - genetics
Acanthamoeba castellanii
Animals
Base Sequence
Biological Evolution
Chlamydomonas - genetics
Chlamydomonas pallidostigmatica
Chlamydomonas reinhardtii
Chloroplasts - genetics
Deoxyribonucleases, Type I Site-Specific - genetics
Deoxyribonucleases, Type I Site-Specific - metabolism
DNA - metabolism
Escherichia coli
Freshwater
Introns - genetics
Mitochondria - genetics
Molecular Sequence Data
Open Reading Frames - genetics
RNA, Protozoan - chemistry
RNA, Protozoan - genetics
RNA, Ribosomal - chemistry
RNA, Ribosomal - genetics
Sequence Homology, Nucleic Acid
title Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20transfer%20of%20ORF-containing%20group%20I%20introns%20between%20different%20subcellular%20compartments%20(chloroplast%20and%20mitochondrion)&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Turmel,%20M&rft.date=1995-07-01&rft.volume=12&rft.issue=4&rft.spage=533&rft.epage=545&rft.pages=533-545&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/oxfordjournals.molbev.a040234&rft_dat=%3Cproquest_cross%3E16837879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16837879&rft_id=info:pmid/7659010&rfr_iscdi=true