Molecularly imprinted polymers on silica: selective supports for high-performance ligand-exchange chromatography

Thin coatings of molecularly imprinted, metal-complexing polymers have been grafted to activated silica beads suitable for high-performance liquid chromatography (HPLC). Propylmethacrylate-activated silica particles were coated by copolymerization with a metal-chelating monomer, Cu 2+-[N-(4-vinylben...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 1995-07, Vol.708 (1), p.19-29
Hauptverfasser: Plunkett, Sean D., Arnold, Frances H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thin coatings of molecularly imprinted, metal-complexing polymers have been grafted to activated silica beads suitable for high-performance liquid chromatography (HPLC). Propylmethacrylate-activated silica particles were coated by copolymerization with a metal-chelating monomer, Cu 2+-[N-(4-vinylbenzyl)-imino]diabetic acid, a metal-coordinating (imidazole) template, and ethylene glycol dimethacrylate. After extraction to remove the template and re-loading with metal, the composite materials re-bind the templates with which they were prepared and exhibit selectivities comparable to bulk-polymerized imprinted materials. The strong Cu 2+-imidazole interaction, desirable for creating a high-fidelity imprint, leads to excessive retention in elution chromatography. By replacing the copper in the imprinted metal-complexing polymers with weaker-binding Zn 2+, these novel ligand-exchange supports can effect partial to complete chromatographic separation of their bis-imidazole templates from other, highly similar imidazole-containing substrates. This “bait-and-switch” approach can significantly enhance the performance of molecularly imprinted materials. Scatchard plots of equilibrium binding data show a significant degree of heterogeneity in the imprinted binding sites of material prepared with a bis-imidazole template, but not with a mono-imidazole template. The best chromatographic separations are observed with small sample sizes, where the substrates occupy the strongest (highest-fidelity) sites.
ISSN:0021-9673
DOI:10.1016/0021-9673(95)00378-Z