Relationship of 13C NMR chemical shift tensors to diffraction structures

13C chemical shift tensor measurements on single crystals provide a powerful method to study changes in the electron environment of nuclei with changes in molecular structure. Thus, diffraction structures are critical to an understanding of chemical shift tensors. This work explores the general reli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section B, Structural science Structural science, 1995-08, Vol.51 (4), p.540-546
Hauptverfasser: Grant, D. M., Liu, F., Iuliucci, R. J., Phung, C. G., Facelli, J. C., Alderman, D. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 4
container_start_page 540
container_title Acta crystallographica. Section B, Structural science
container_volume 51
creator Grant, D. M.
Liu, F.
Iuliucci, R. J.
Phung, C. G.
Facelli, J. C.
Alderman, D. W.
description 13C chemical shift tensor measurements on single crystals provide a powerful method to study changes in the electron environment of nuclei with changes in molecular structure. Thus, diffraction structures are critical to an understanding of chemical shift tensors. This work explores the general reliability of using structural data to predict components of the symmetrical chemical shift tensor. Imprecision in the hydrogen positions introduces considerable scatter in the simulated 13C shift tensors, and optimized C-H bond distances in methyl-beta-D-glucopyranoside used with the X-ray positions of the heavier C and O atoms greatly improve the simulated chemical shifts. Acenaphthene, with two crystallographically different molecules per unit cell, offers an excellent example for comparing and contrasting structural differences in the two molecules. A recently improved X-ray structure of naphthalene obtained at low temperature provides chemical shift simulations which are comparable to those from neutron diffraction methods and appear to reflect breaks in the D2h symmetry measured in the NMR chemical shift tensors. These data illustrate the close relationship between NMR and diffraction structures.
doi_str_mv 10.1107/S0108768195000383
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_77461487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77461487</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2390-da3831855c56a39b8851b45ae5ffba510c0646aacff13c8813e5eee101857e753</originalsourceid><addsrcrecordid>eNplkU1PGzEQhq2KigboD-CA5APitnQmXn_skUaQIGiqhlaoJ8txxsLtJhvWu4L8-zpKlEtPc3iedzSvhrFzhGtE0F-eAMFoZbCSACCM-MAGqAAKqUs4YoMtLrb8EztJ6U92SjRwzI61KpURZsAmM6pdF5tVeolr3gSOYsSn32bcv9AyelfzDELHO1qlpk28a_gihtA6vw3x1LW97_qW0hn7GFyd6PN-nrJfd7c_R5Pi8fv4fnTzWMShqKBYuHwlGim9VE5Uc2MkzkvpSIYwdxLBQz7NOR8CCm8MCpJEhJAzmrQUp-xqt3fdNq89pc4uY_JU125FTZ-s1qXC0ugsXuzFfr6khV23cenajd1Xz_xyz13KPXOllY_poAk1lJUaZs3stLdY0-aAEez2A_a_D9ib318nM4Ah5Gixi8bU0fsh6tq_VmmhpX2eju2P6kE-YzWzlfgHQoKGGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77461487</pqid></control><display><type>article</type><title>Relationship of 13C NMR chemical shift tensors to diffraction structures</title><source>MEDLINE</source><source>Crystallography Journals Online</source><creator>Grant, D. M. ; Liu, F. ; Iuliucci, R. J. ; Phung, C. G. ; Facelli, J. C. ; Alderman, D. W.</creator><creatorcontrib>Grant, D. M. ; Liu, F. ; Iuliucci, R. J. ; Phung, C. G. ; Facelli, J. C. ; Alderman, D. W.</creatorcontrib><description>13C chemical shift tensor measurements on single crystals provide a powerful method to study changes in the electron environment of nuclei with changes in molecular structure. Thus, diffraction structures are critical to an understanding of chemical shift tensors. This work explores the general reliability of using structural data to predict components of the symmetrical chemical shift tensor. Imprecision in the hydrogen positions introduces considerable scatter in the simulated 13C shift tensors, and optimized C-H bond distances in methyl-beta-D-glucopyranoside used with the X-ray positions of the heavier C and O atoms greatly improve the simulated chemical shifts. Acenaphthene, with two crystallographically different molecules per unit cell, offers an excellent example for comparing and contrasting structural differences in the two molecules. A recently improved X-ray structure of naphthalene obtained at low temperature provides chemical shift simulations which are comparable to those from neutron diffraction methods and appear to reflect breaks in the D2h symmetry measured in the NMR chemical shift tensors. These data illustrate the close relationship between NMR and diffraction structures.</description><identifier>ISSN: 0108-7681</identifier><identifier>EISSN: 1600-5740</identifier><identifier>DOI: 10.1107/S0108768195000383</identifier><identifier>PMID: 7646838</identifier><identifier>CODEN: ASBSDK</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Carbohydrate Conformation ; Carbon Isotopes ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Crystal binding; cohesive energy ; Crystalline state (including molecular motions in solids) ; Exact sciences and technology ; Glycosides - chemistry ; Magnetic Resonance Spectroscopy ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; Nuclear magnetic resonance and relaxation ; Physics ; Structure of solids and liquids; crystallography ; X-ray absorption spectroscopy: exafs, nexafs, xanes, etc ; X-Ray Diffraction ; X-ray diffraction and scattering</subject><ispartof>Acta crystallographica. Section B, Structural science, 1995-08, Vol.51 (4), p.540-546</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3625962$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7646838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grant, D. M.</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Iuliucci, R. J.</creatorcontrib><creatorcontrib>Phung, C. G.</creatorcontrib><creatorcontrib>Facelli, J. C.</creatorcontrib><creatorcontrib>Alderman, D. W.</creatorcontrib><title>Relationship of 13C NMR chemical shift tensors to diffraction structures</title><title>Acta crystallographica. Section B, Structural science</title><addtitle>Acta Cryst. B</addtitle><description>13C chemical shift tensor measurements on single crystals provide a powerful method to study changes in the electron environment of nuclei with changes in molecular structure. Thus, diffraction structures are critical to an understanding of chemical shift tensors. This work explores the general reliability of using structural data to predict components of the symmetrical chemical shift tensor. Imprecision in the hydrogen positions introduces considerable scatter in the simulated 13C shift tensors, and optimized C-H bond distances in methyl-beta-D-glucopyranoside used with the X-ray positions of the heavier C and O atoms greatly improve the simulated chemical shifts. Acenaphthene, with two crystallographically different molecules per unit cell, offers an excellent example for comparing and contrasting structural differences in the two molecules. A recently improved X-ray structure of naphthalene obtained at low temperature provides chemical shift simulations which are comparable to those from neutron diffraction methods and appear to reflect breaks in the D2h symmetry measured in the NMR chemical shift tensors. These data illustrate the close relationship between NMR and diffraction structures.</description><subject>Carbohydrate Conformation</subject><subject>Carbon Isotopes</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crystal binding; cohesive energy</subject><subject>Crystalline state (including molecular motions in solids)</subject><subject>Exact sciences and technology</subject><subject>Glycosides - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>Nuclear magnetic resonance and relaxation</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>X-ray absorption spectroscopy: exafs, nexafs, xanes, etc</subject><subject>X-Ray Diffraction</subject><subject>X-ray diffraction and scattering</subject><issn>0108-7681</issn><issn>1600-5740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkU1PGzEQhq2KigboD-CA5APitnQmXn_skUaQIGiqhlaoJ8txxsLtJhvWu4L8-zpKlEtPc3iedzSvhrFzhGtE0F-eAMFoZbCSACCM-MAGqAAKqUs4YoMtLrb8EztJ6U92SjRwzI61KpURZsAmM6pdF5tVeolr3gSOYsSn32bcv9AyelfzDELHO1qlpk28a_gihtA6vw3x1LW97_qW0hn7GFyd6PN-nrJfd7c_R5Pi8fv4fnTzWMShqKBYuHwlGim9VE5Uc2MkzkvpSIYwdxLBQz7NOR8CCm8MCpJEhJAzmrQUp-xqt3fdNq89pc4uY_JU125FTZ-s1qXC0ugsXuzFfr6khV23cenajd1Xz_xyz13KPXOllY_poAk1lJUaZs3stLdY0-aAEez2A_a_D9ib318nM4Ah5Gixi8bU0fsh6tq_VmmhpX2eju2P6kE-YzWzlfgHQoKGGg</recordid><startdate>199508</startdate><enddate>199508</enddate><creator>Grant, D. M.</creator><creator>Liu, F.</creator><creator>Iuliucci, R. J.</creator><creator>Phung, C. G.</creator><creator>Facelli, J. C.</creator><creator>Alderman, D. W.</creator><general>International Union of Crystallography</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>199508</creationdate><title>Relationship of 13C NMR chemical shift tensors to diffraction structures</title><author>Grant, D. M. ; Liu, F. ; Iuliucci, R. J. ; Phung, C. G. ; Facelli, J. C. ; Alderman, D. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2390-da3831855c56a39b8851b45ae5ffba510c0646aacff13c8813e5eee101857e753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Carbohydrate Conformation</topic><topic>Carbon Isotopes</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crystal binding; cohesive energy</topic><topic>Crystalline state (including molecular motions in solids)</topic><topic>Exact sciences and technology</topic><topic>Glycosides - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>Nuclear magnetic resonance and relaxation</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>X-ray absorption spectroscopy: exafs, nexafs, xanes, etc</topic><topic>X-Ray Diffraction</topic><topic>X-ray diffraction and scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grant, D. M.</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Iuliucci, R. J.</creatorcontrib><creatorcontrib>Phung, C. G.</creatorcontrib><creatorcontrib>Facelli, J. C.</creatorcontrib><creatorcontrib>Alderman, D. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section B, Structural science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grant, D. M.</au><au>Liu, F.</au><au>Iuliucci, R. J.</au><au>Phung, C. G.</au><au>Facelli, J. C.</au><au>Alderman, D. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship of 13C NMR chemical shift tensors to diffraction structures</atitle><jtitle>Acta crystallographica. Section B, Structural science</jtitle><addtitle>Acta Cryst. B</addtitle><date>1995-08</date><risdate>1995</risdate><volume>51</volume><issue>4</issue><spage>540</spage><epage>546</epage><pages>540-546</pages><issn>0108-7681</issn><eissn>1600-5740</eissn><coden>ASBSDK</coden><abstract>13C chemical shift tensor measurements on single crystals provide a powerful method to study changes in the electron environment of nuclei with changes in molecular structure. Thus, diffraction structures are critical to an understanding of chemical shift tensors. This work explores the general reliability of using structural data to predict components of the symmetrical chemical shift tensor. Imprecision in the hydrogen positions introduces considerable scatter in the simulated 13C shift tensors, and optimized C-H bond distances in methyl-beta-D-glucopyranoside used with the X-ray positions of the heavier C and O atoms greatly improve the simulated chemical shifts. Acenaphthene, with two crystallographically different molecules per unit cell, offers an excellent example for comparing and contrasting structural differences in the two molecules. A recently improved X-ray structure of naphthalene obtained at low temperature provides chemical shift simulations which are comparable to those from neutron diffraction methods and appear to reflect breaks in the D2h symmetry measured in the NMR chemical shift tensors. These data illustrate the close relationship between NMR and diffraction structures.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>7646838</pmid><doi>10.1107/S0108768195000383</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0108-7681
ispartof Acta crystallographica. Section B, Structural science, 1995-08, Vol.51 (4), p.540-546
issn 0108-7681
1600-5740
language eng
recordid cdi_proquest_miscellaneous_77461487
source MEDLINE; Crystallography Journals Online
subjects Carbohydrate Conformation
Carbon Isotopes
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Crystal binding
cohesive energy
Crystalline state (including molecular motions in solids)
Exact sciences and technology
Glycosides - chemistry
Magnetic Resonance Spectroscopy
Magnetic resonances and relaxations in condensed matter, mössbauer effect
Nuclear magnetic resonance and relaxation
Physics
Structure of solids and liquids
crystallography
X-ray absorption spectroscopy: exafs, nexafs, xanes, etc
X-Ray Diffraction
X-ray diffraction and scattering
title Relationship of 13C NMR chemical shift tensors to diffraction structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20of%2013C%20NMR%20chemical%20shift%20tensors%20to%20diffraction%20structures&rft.jtitle=Acta%20crystallographica.%20Section%20B,%20Structural%20science&rft.au=Grant,%20D.%20M.&rft.date=1995-08&rft.volume=51&rft.issue=4&rft.spage=540&rft.epage=546&rft.pages=540-546&rft.issn=0108-7681&rft.eissn=1600-5740&rft.coden=ASBSDK&rft_id=info:doi/10.1107/S0108768195000383&rft_dat=%3Cproquest_pubme%3E77461487%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77461487&rft_id=info:pmid/7646838&rfr_iscdi=true