Isolation of functional homolog of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans and functional analysis of conserved residues

To investigate the degree of conservation of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans, and to help direct its functional analysis, we cloned a homolog (designated nim-1) from Neurospora crassa. Over the catalytic domain NIM-1 is 75% identical to NIMA, but overall the ident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1995-07, Vol.270 (30), p.18110-18116
Hauptverfasser: Pu, R.T. (Geisinger Clinic, Danville, PA.), Xu, G, Wu, L, Vierula, J, O'Donnell, K, Ye, X.S, Osmani, S.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the degree of conservation of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans, and to help direct its functional analysis, we cloned a homolog (designated nim-1) from Neurospora crassa. Over the catalytic domain NIM-1 is 75% identical to NIMA, but overall the identity drops to 52%. nim-1 was able to functionally complement nimA5 in A. nidulans. Mutational analysis of potential activating phosphorylation sites found in NIMA, NIM-1, and related protein kinases was performed on NIMA. Mutation of threonine 199 (conserved in all NIMA-related kineses) inhibited NIMA beta-casein kinase activity and abolished its in vivo function. This site conforms to a minimal consensus phosphorylation site for NIMA (FXXT) and is analogous to the autophosphorylation site of cyclic-AMP-dependent protein kineses. However, mutation of a unique cysteine residue found only in the catalytic site of NIMA and NIM-1 had no effect on NIMA kinase activity or function. Three temperature-sensitive alleles of nimA that cause arrest in G2 were sequenced and shown to generate three different amino acid substitutions. None of the mutations prevented accumulation of NIMA protein during G2 arrest, but all prevented the p34cdc2/cyclin B-dependent phosphorylation of NIMA normally seen during mitotic initiation even though p34cdc2/cyclin B H1 kinase activity was fully activated
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.30.18110