Effects of leukocyte inhibitory factor (LIF) on neutrophil phagocytosis and bactericidal activity

Human leukocyte inhibitory factor (LIF) is a lymphokine initially defined by its ability to inhibit the random migration of neutrophils. We have recently demonstrated that LIF also potentiates a number of f-met-leu-phe-mediated functions as well as enhancing one Fc receptor-mediated function (antibo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 1987-03, Vol.138 (5), p.1475-1479
Hauptverfasser: Borish, L, Rocklin, RE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human leukocyte inhibitory factor (LIF) is a lymphokine initially defined by its ability to inhibit the random migration of neutrophils. We have recently demonstrated that LIF also potentiates a number of f-met-leu-phe-mediated functions as well as enhancing one Fc receptor-mediated function (antibody-dependent cellular cytotoxicity). In this paper, we have extended our studies involving the effects of LIF on the neutrophil, specifically its effect on phagocytosis and bactericidal activity. We demonstrate that LIF (2 U/ml) potentiates phagocytosis of opsonized heat-killed Staphylococcus aureus (up to 57.2%) and sheep erythrocytes (124.4%) as well as unopsonized latex particles (59.9%). Phagocytosis of opsonized sheep erythrocytes was inhibited by an anti-neutrophil Fc receptor antibody with control PMN but not using the LIF-treated PMN. LIF (1/2 to 1 U) also potentiates the killing of S. aureus by up to 51.6%. Higher concentrations of LIF (greater than or equal to 4 U) inhibits killing. These effects were shown not to be associated with an increase in Fc receptor availability. It is therefore possible that potentiation of these neutrophil activities by LIF may occur either as a result of increased receptor turnover or, more likely, secondary to an increase in nonspecific neutrophil adherence. These studies further support the concept that LIF may have an important role in vivo in inflammation and immunity.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.138.5.1475