Mineral Distribution and Dimensional Changes in Human Dentin during Demineralization

Many bonding agents require the dentin surface to be acid-etched prior to being bonded. Understanding the stability and morphology of the etched dentin surface is important for improving bond strength and reliability in these systems. In this study, the atomic force microscope was used to quantify d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dental research 1995-05, Vol.74 (5), p.1179-1184
Hauptverfasser: Kinney, J.H., Balooch, M., Haupt, D.L., Marshall, S.J., Marshall, G.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many bonding agents require the dentin surface to be acid-etched prior to being bonded. Understanding the stability and morphology of the etched dentin surface is important for improving bond strength and reliability in these systems. In this study, the atomic force microscope was used to quantify dimensional changes that occur to fully hydrated dentin during demineralization with a pH 4.0 lactic acid gel. A high-resolution microtomography instrument, the x-ray tomographic microscope, was also used to quantify the mineral density distribution in the dentin as a function of etching time. The intertubular dentin surface shrank by less than 0.5 μm during etching, while the peritubular dentin receded at an initially rapid linear rate. The dentin surface retained its initial morphology, although it was more porous with the removal of the peritubular dentin. Beneath the etched surface, there were three major zones characterized by mineral density differences. The first zone was a fully demineralized collagen layer, subjacent to which was a partially demineralized zone of roughly constant mineral density. Immediately following the partially mineralized layer was normal dentin. The presence of the partially mineralized layer could be explained in terms of different transport rates in the peritubular and intertubular dentin.
ISSN:0022-0345
1544-0591
DOI:10.1177/00220345950740050601