Development and validation of a sensitive solid-phase-extraction and high-performance liquid chromatography assay for the bioreductive agent tirapazamine and its major metabolites in mouse and human plasma for pharmacokinetically guided dose escalation
A sensitive solid-phase-extraction and high-performance liquid chromatography (HPLC) method has been developed to investigate the pharmacokinetics and metabolism of the hypoxic-cell cytotoxic agent tirapazamine (1,2,4-benzotriazine-3-amine 1,4-di-N-oxide; WIN 59075, SR 4233), currently in phase I/II...
Gespeichert in:
Veröffentlicht in: | Cancer chemotherapy and pharmacology 1995-05, Vol.36 (3), p.266-270 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | 3 |
container_start_page | 266 |
container_title | Cancer chemotherapy and pharmacology |
container_volume | 36 |
creator | Robin, Jr, H Senan, S Workman, P Graham, M A |
description | A sensitive solid-phase-extraction and high-performance liquid chromatography (HPLC) method has been developed to investigate the pharmacokinetics and metabolism of the hypoxic-cell cytotoxic agent tirapazamine (1,2,4-benzotriazine-3-amine 1,4-di-N-oxide; WIN 59075, SR 4233), currently in phase I/II studies in the United Kingdom and United States. A sample extraction and concentration process was devised using strong cation-exchange Bond Elut cartridges. Tirapazamine, the mono and zero-N-oxide metabolites (WIN 64012, WIN 60109) were isocratically resolved using a microBondapak phenyl HPLC column and measured using photodiode-array detection. The minimal quantifiable level (MQL) of tirapazamine was 40 ng/ml in mouse plasma and 20 ng/ml in human plasma. Recovery was consistently greater than 80% for all compounds over the concentration range of 20 ng/ml to 20 micrograms/ml. No significant decomposition was observed following up to three freeze/thaw cycles and storage at -70 degrees C for 52 days. The assay was accurate and reproducible, with measured values lying within the limits of defined acceptance criteria. Additional studies to investigate the degree of plasma protein binding showed that tirapazamine did not bind extensively to plasma proteins (binding, 9.7% +/- 0.1% and 18.7% +/- 1.3% in mouse and human plasma, respectively). These small species differences in protein binding are unlikely to have any major impact on the extrapolation of pharmacokinetic data from mice to humans. The assay has now been successfully applied to investigate the pharmacokinetics and metabolism of tirapazamine in mice and patients as part of a pharmacokinetically guided dose-escalation strategy for phase I clinical trials. |
doi_str_mv | 10.1007/BF00685859 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77334658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77334658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-a3c0dccad86594a4a850d2be2d0f9df8f2fe69a7701728ce9534e779fa9c0bd33</originalsourceid><addsrcrecordid>eNpFkUFv1DAQRi1EVZbChTuSTxyQAnbsrJMjFAqVKvUC52hiTzYucZzazortb-eAN7uCkyX7fc_faAh5w9kHzpj6-PmGsW1d1VXzjGy4FGXBaimekw0TUhaVYvIFeRnjA2NMciEuyaVSNecV25A_X3CPo58dTonCZOgeRmsgWT9R31OgEadok90jjT6_FPMAEQv8nQLolTqGBrsbihlD74ODSSMd7eNiDdVD8A6S3wWYhwOFGOFAM0TTgLSzPqBZ9CqH3bFAshmEJ3B2wlVsU6QOHnLCYYIuN0gYqZ2o80s8IcOSv6TzCNHB6s4Ncwvtf2VJshrG8UB3uQ0aanwOYcx364SvyEUPY8TX5_OK_Lz5-uP6e3F3_-32-tNdoXmjUgFCM6M1mHpbNRIk1BUzZYelYX1j-rove9w2oBTjqqw1NpWQqFTTQ6NZZ4S4Iu9O3jn4xwVjap2NGscRJsxztEoJIbdVncH3J1AHH2PAvp2DdRAOLWftcdXt_1Vn-O3ZunQOzT_0vFvxF87vrRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77334658</pqid></control><display><type>article</type><title>Development and validation of a sensitive solid-phase-extraction and high-performance liquid chromatography assay for the bioreductive agent tirapazamine and its major metabolites in mouse and human plasma for pharmacokinetically guided dose escalation</title><source>MEDLINE</source><source>SpringerLink_现刊</source><creator>Robin, Jr, H ; Senan, S ; Workman, P ; Graham, M A</creator><creatorcontrib>Robin, Jr, H ; Senan, S ; Workman, P ; Graham, M A</creatorcontrib><description>A sensitive solid-phase-extraction and high-performance liquid chromatography (HPLC) method has been developed to investigate the pharmacokinetics and metabolism of the hypoxic-cell cytotoxic agent tirapazamine (1,2,4-benzotriazine-3-amine 1,4-di-N-oxide; WIN 59075, SR 4233), currently in phase I/II studies in the United Kingdom and United States. A sample extraction and concentration process was devised using strong cation-exchange Bond Elut cartridges. Tirapazamine, the mono and zero-N-oxide metabolites (WIN 64012, WIN 60109) were isocratically resolved using a microBondapak phenyl HPLC column and measured using photodiode-array detection. The minimal quantifiable level (MQL) of tirapazamine was 40 ng/ml in mouse plasma and 20 ng/ml in human plasma. Recovery was consistently greater than 80% for all compounds over the concentration range of 20 ng/ml to 20 micrograms/ml. No significant decomposition was observed following up to three freeze/thaw cycles and storage at -70 degrees C for 52 days. The assay was accurate and reproducible, with measured values lying within the limits of defined acceptance criteria. Additional studies to investigate the degree of plasma protein binding showed that tirapazamine did not bind extensively to plasma proteins (binding, 9.7% +/- 0.1% and 18.7% +/- 1.3% in mouse and human plasma, respectively). These small species differences in protein binding are unlikely to have any major impact on the extrapolation of pharmacokinetic data from mice to humans. The assay has now been successfully applied to investigate the pharmacokinetics and metabolism of tirapazamine in mice and patients as part of a pharmacokinetically guided dose-escalation strategy for phase I clinical trials.</description><identifier>ISSN: 0344-5704</identifier><identifier>EISSN: 1432-0843</identifier><identifier>DOI: 10.1007/BF00685859</identifier><identifier>PMID: 7781150</identifier><language>eng</language><publisher>Germany</publisher><subject>Animals ; Antineoplastic Agents - blood ; Biotransformation ; Chromatography, High Pressure Liquid - methods ; Dose-Response Relationship, Drug ; Drug Stability ; Humans ; Mice ; Reproducibility of Results ; Sensitivity and Specificity ; Triazines - blood ; Triazines - metabolism ; Triazines - pharmacokinetics</subject><ispartof>Cancer chemotherapy and pharmacology, 1995-05, Vol.36 (3), p.266-270</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c197t-a3c0dccad86594a4a850d2be2d0f9df8f2fe69a7701728ce9534e779fa9c0bd33</citedby><cites>FETCH-LOGICAL-c197t-a3c0dccad86594a4a850d2be2d0f9df8f2fe69a7701728ce9534e779fa9c0bd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7781150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robin, Jr, H</creatorcontrib><creatorcontrib>Senan, S</creatorcontrib><creatorcontrib>Workman, P</creatorcontrib><creatorcontrib>Graham, M A</creatorcontrib><title>Development and validation of a sensitive solid-phase-extraction and high-performance liquid chromatography assay for the bioreductive agent tirapazamine and its major metabolites in mouse and human plasma for pharmacokinetically guided dose escalation</title><title>Cancer chemotherapy and pharmacology</title><addtitle>Cancer Chemother Pharmacol</addtitle><description>A sensitive solid-phase-extraction and high-performance liquid chromatography (HPLC) method has been developed to investigate the pharmacokinetics and metabolism of the hypoxic-cell cytotoxic agent tirapazamine (1,2,4-benzotriazine-3-amine 1,4-di-N-oxide; WIN 59075, SR 4233), currently in phase I/II studies in the United Kingdom and United States. A sample extraction and concentration process was devised using strong cation-exchange Bond Elut cartridges. Tirapazamine, the mono and zero-N-oxide metabolites (WIN 64012, WIN 60109) were isocratically resolved using a microBondapak phenyl HPLC column and measured using photodiode-array detection. The minimal quantifiable level (MQL) of tirapazamine was 40 ng/ml in mouse plasma and 20 ng/ml in human plasma. Recovery was consistently greater than 80% for all compounds over the concentration range of 20 ng/ml to 20 micrograms/ml. No significant decomposition was observed following up to three freeze/thaw cycles and storage at -70 degrees C for 52 days. The assay was accurate and reproducible, with measured values lying within the limits of defined acceptance criteria. Additional studies to investigate the degree of plasma protein binding showed that tirapazamine did not bind extensively to plasma proteins (binding, 9.7% +/- 0.1% and 18.7% +/- 1.3% in mouse and human plasma, respectively). These small species differences in protein binding are unlikely to have any major impact on the extrapolation of pharmacokinetic data from mice to humans. The assay has now been successfully applied to investigate the pharmacokinetics and metabolism of tirapazamine in mice and patients as part of a pharmacokinetically guided dose-escalation strategy for phase I clinical trials.</description><subject>Animals</subject><subject>Antineoplastic Agents - blood</subject><subject>Biotransformation</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Stability</subject><subject>Humans</subject><subject>Mice</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Triazines - blood</subject><subject>Triazines - metabolism</subject><subject>Triazines - pharmacokinetics</subject><issn>0344-5704</issn><issn>1432-0843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkUFv1DAQRi1EVZbChTuSTxyQAnbsrJMjFAqVKvUC52hiTzYucZzazortb-eAN7uCkyX7fc_faAh5w9kHzpj6-PmGsW1d1VXzjGy4FGXBaimekw0TUhaVYvIFeRnjA2NMciEuyaVSNecV25A_X3CPo58dTonCZOgeRmsgWT9R31OgEadok90jjT6_FPMAEQv8nQLolTqGBrsbihlD74ODSSMd7eNiDdVD8A6S3wWYhwOFGOFAM0TTgLSzPqBZ9CqH3bFAshmEJ3B2wlVsU6QOHnLCYYIuN0gYqZ2o80s8IcOSv6TzCNHB6s4Ncwvtf2VJshrG8UB3uQ0aanwOYcx364SvyEUPY8TX5_OK_Lz5-uP6e3F3_-32-tNdoXmjUgFCM6M1mHpbNRIk1BUzZYelYX1j-rove9w2oBTjqqw1NpWQqFTTQ6NZZ4S4Iu9O3jn4xwVjap2NGscRJsxztEoJIbdVncH3J1AHH2PAvp2DdRAOLWftcdXt_1Vn-O3ZunQOzT_0vFvxF87vrRE</recordid><startdate>199505</startdate><enddate>199505</enddate><creator>Robin, Jr, H</creator><creator>Senan, S</creator><creator>Workman, P</creator><creator>Graham, M A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199505</creationdate><title>Development and validation of a sensitive solid-phase-extraction and high-performance liquid chromatography assay for the bioreductive agent tirapazamine and its major metabolites in mouse and human plasma for pharmacokinetically guided dose escalation</title><author>Robin, Jr, H ; Senan, S ; Workman, P ; Graham, M A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-a3c0dccad86594a4a850d2be2d0f9df8f2fe69a7701728ce9534e779fa9c0bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - blood</topic><topic>Biotransformation</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Stability</topic><topic>Humans</topic><topic>Mice</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Triazines - blood</topic><topic>Triazines - metabolism</topic><topic>Triazines - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robin, Jr, H</creatorcontrib><creatorcontrib>Senan, S</creatorcontrib><creatorcontrib>Workman, P</creatorcontrib><creatorcontrib>Graham, M A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer chemotherapy and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robin, Jr, H</au><au>Senan, S</au><au>Workman, P</au><au>Graham, M A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and validation of a sensitive solid-phase-extraction and high-performance liquid chromatography assay for the bioreductive agent tirapazamine and its major metabolites in mouse and human plasma for pharmacokinetically guided dose escalation</atitle><jtitle>Cancer chemotherapy and pharmacology</jtitle><addtitle>Cancer Chemother Pharmacol</addtitle><date>1995-05</date><risdate>1995</risdate><volume>36</volume><issue>3</issue><spage>266</spage><epage>270</epage><pages>266-270</pages><issn>0344-5704</issn><eissn>1432-0843</eissn><abstract>A sensitive solid-phase-extraction and high-performance liquid chromatography (HPLC) method has been developed to investigate the pharmacokinetics and metabolism of the hypoxic-cell cytotoxic agent tirapazamine (1,2,4-benzotriazine-3-amine 1,4-di-N-oxide; WIN 59075, SR 4233), currently in phase I/II studies in the United Kingdom and United States. A sample extraction and concentration process was devised using strong cation-exchange Bond Elut cartridges. Tirapazamine, the mono and zero-N-oxide metabolites (WIN 64012, WIN 60109) were isocratically resolved using a microBondapak phenyl HPLC column and measured using photodiode-array detection. The minimal quantifiable level (MQL) of tirapazamine was 40 ng/ml in mouse plasma and 20 ng/ml in human plasma. Recovery was consistently greater than 80% for all compounds over the concentration range of 20 ng/ml to 20 micrograms/ml. No significant decomposition was observed following up to three freeze/thaw cycles and storage at -70 degrees C for 52 days. The assay was accurate and reproducible, with measured values lying within the limits of defined acceptance criteria. Additional studies to investigate the degree of plasma protein binding showed that tirapazamine did not bind extensively to plasma proteins (binding, 9.7% +/- 0.1% and 18.7% +/- 1.3% in mouse and human plasma, respectively). These small species differences in protein binding are unlikely to have any major impact on the extrapolation of pharmacokinetic data from mice to humans. The assay has now been successfully applied to investigate the pharmacokinetics and metabolism of tirapazamine in mice and patients as part of a pharmacokinetically guided dose-escalation strategy for phase I clinical trials.</abstract><cop>Germany</cop><pmid>7781150</pmid><doi>10.1007/BF00685859</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0344-5704 |
ispartof | Cancer chemotherapy and pharmacology, 1995-05, Vol.36 (3), p.266-270 |
issn | 0344-5704 1432-0843 |
language | eng |
recordid | cdi_proquest_miscellaneous_77334658 |
source | MEDLINE; SpringerLink_现刊 |
subjects | Animals Antineoplastic Agents - blood Biotransformation Chromatography, High Pressure Liquid - methods Dose-Response Relationship, Drug Drug Stability Humans Mice Reproducibility of Results Sensitivity and Specificity Triazines - blood Triazines - metabolism Triazines - pharmacokinetics |
title | Development and validation of a sensitive solid-phase-extraction and high-performance liquid chromatography assay for the bioreductive agent tirapazamine and its major metabolites in mouse and human plasma for pharmacokinetically guided dose escalation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20validation%20of%20a%20sensitive%20solid-phase-extraction%20and%20high-performance%20liquid%20chromatography%20assay%20for%20the%20bioreductive%20agent%20tirapazamine%20and%20its%20major%20metabolites%20in%20mouse%20and%20human%20plasma%20for%20pharmacokinetically%20guided%20dose%20escalation&rft.jtitle=Cancer%20chemotherapy%20and%20pharmacology&rft.au=Robin,%20Jr,%20H&rft.date=1995-05&rft.volume=36&rft.issue=3&rft.spage=266&rft.epage=270&rft.pages=266-270&rft.issn=0344-5704&rft.eissn=1432-0843&rft_id=info:doi/10.1007/BF00685859&rft_dat=%3Cproquest_cross%3E77334658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77334658&rft_id=info:pmid/7781150&rfr_iscdi=true |