Evolutionary credit apportionment and its application to time-dependent neural processing

A new approach to training recurrent neural networks is applied to temporal neural processing problems. Our method combines Darwinian variation and selection with a credit apportionment mechanism for assigning credit to individual neurons within the groups of competing networks. Interconnections bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioSystems 1995, Vol.34 (1-3), p.161-172
Hauptverfasser: Smalz, Robert, Conrad, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 1-3
container_start_page 161
container_title BioSystems
container_volume 34
creator Smalz, Robert
Conrad, Michael
description A new approach to training recurrent neural networks is applied to temporal neural processing problems. Our method combines Darwinian variation and selection with a credit apportionment mechanism for assigning credit to individual neurons within the groups of competing networks. Interconnections between the networks allow the outputs of neurons in one network to be available to the neurons in other networks. The firing behavior of the neurons in a variety of networks is compared with the corresponding neurons in high performing networks for specific input contexts. Payoffs accorded to neurons in one network can thus be shared with neurons in other networks. Only the best neurons over the entire repertoire of networks are allowed to pass their crucial function-determining parameters on to other neurons. The algorithm is demonstrated with connectionist-type units on several temporal processing tasks and compared to genetic algorithms.
doi_str_mv 10.1016/0303-2647(94)01443-B
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77234118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>030326479401443B</els_id><sourcerecordid>77234118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-3ef44dc68322f0e7678b5a7dc75aae047c391ee5c5b2acffdc89a70ce28be3503</originalsourceid><addsrcrecordid>eNp9kE9PxCAQxYnRrOvqN9CkJ6OHKhRa6MXE3ax_kk286METoTA1mLZUaDfx20vdjUe5EN68meH9EDon-IZgUtxiimmaFYxflewaE8ZoujxAcyJ4lgqasUM0_7Mco5MQPnE8uSAzNOM840Up5uh9vXXNOFjXKf-daA_GDonqe-cnrYUuvjqT2CFMamO1mvRkcMlgW0gN9NCZydXB6FWT9N5pCMF2H6foqFZNgLP9vUBvD-vX1VO6eXl8Xt1vUk1zPqQUasaMLuKPsxoDL7iocsWN5rlSgBnXtCQAuc6rTOm6NlqUimMNmaiA5pgu0OVublz9NUIYZGuDhqZRHbgxyBiVMkJENLKdUXsXgoda9t62MbYkWE5E5YRLTrhkyeQvUbmMbRf7-WPVgvlr2iOM9btdHWLIrQUvg7bQ6UjSgx6kcfb_BT9BIofC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77234118</pqid></control><display><type>article</type><title>Evolutionary credit apportionment and its application to time-dependent neural processing</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Smalz, Robert ; Conrad, Michael</creator><creatorcontrib>Smalz, Robert ; Conrad, Michael</creatorcontrib><description>A new approach to training recurrent neural networks is applied to temporal neural processing problems. Our method combines Darwinian variation and selection with a credit apportionment mechanism for assigning credit to individual neurons within the groups of competing networks. Interconnections between the networks allow the outputs of neurons in one network to be available to the neurons in other networks. The firing behavior of the neurons in a variety of networks is compared with the corresponding neurons in high performing networks for specific input contexts. Payoffs accorded to neurons in one network can thus be shared with neurons in other networks. Only the best neurons over the entire repertoire of networks are allowed to pass their crucial function-determining parameters on to other neurons. The algorithm is demonstrated with connectionist-type units on several temporal processing tasks and compared to genetic algorithms.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/0303-2647(94)01443-B</identifier><identifier>PMID: 7727698</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Algorithms ; Animals ; Biological Evolution ; Credit apportionment ; Evolutionary learning ; Feedback ; Humans ; Learning - physiology ; Learning algorithms ; Memory - physiology ; Models, Neurological ; Nerve Net - physiology ; Neural nets ; Neural Networks (Computer)</subject><ispartof>BioSystems, 1995, Vol.34 (1-3), p.161-172</ispartof><rights>1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-3ef44dc68322f0e7678b5a7dc75aae047c391ee5c5b2acffdc89a70ce28be3503</citedby><cites>FETCH-LOGICAL-c357t-3ef44dc68322f0e7678b5a7dc75aae047c391ee5c5b2acffdc89a70ce28be3503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0303-2647(94)01443-B$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7727698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smalz, Robert</creatorcontrib><creatorcontrib>Conrad, Michael</creatorcontrib><title>Evolutionary credit apportionment and its application to time-dependent neural processing</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>A new approach to training recurrent neural networks is applied to temporal neural processing problems. Our method combines Darwinian variation and selection with a credit apportionment mechanism for assigning credit to individual neurons within the groups of competing networks. Interconnections between the networks allow the outputs of neurons in one network to be available to the neurons in other networks. The firing behavior of the neurons in a variety of networks is compared with the corresponding neurons in high performing networks for specific input contexts. Payoffs accorded to neurons in one network can thus be shared with neurons in other networks. Only the best neurons over the entire repertoire of networks are allowed to pass their crucial function-determining parameters on to other neurons. The algorithm is demonstrated with connectionist-type units on several temporal processing tasks and compared to genetic algorithms.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Credit apportionment</subject><subject>Evolutionary learning</subject><subject>Feedback</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Learning algorithms</subject><subject>Memory - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neural nets</subject><subject>Neural Networks (Computer)</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9PxCAQxYnRrOvqN9CkJ6OHKhRa6MXE3ax_kk286METoTA1mLZUaDfx20vdjUe5EN68meH9EDon-IZgUtxiimmaFYxflewaE8ZoujxAcyJ4lgqasUM0_7Mco5MQPnE8uSAzNOM840Up5uh9vXXNOFjXKf-daA_GDonqe-cnrYUuvjqT2CFMamO1mvRkcMlgW0gN9NCZydXB6FWT9N5pCMF2H6foqFZNgLP9vUBvD-vX1VO6eXl8Xt1vUk1zPqQUasaMLuKPsxoDL7iocsWN5rlSgBnXtCQAuc6rTOm6NlqUimMNmaiA5pgu0OVublz9NUIYZGuDhqZRHbgxyBiVMkJENLKdUXsXgoda9t62MbYkWE5E5YRLTrhkyeQvUbmMbRf7-WPVgvlr2iOM9btdHWLIrQUvg7bQ6UjSgx6kcfb_BT9BIofC</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Smalz, Robert</creator><creator>Conrad, Michael</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>1995</creationdate><title>Evolutionary credit apportionment and its application to time-dependent neural processing</title><author>Smalz, Robert ; Conrad, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-3ef44dc68322f0e7678b5a7dc75aae047c391ee5c5b2acffdc89a70ce28be3503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Credit apportionment</topic><topic>Evolutionary learning</topic><topic>Feedback</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Learning algorithms</topic><topic>Memory - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neural nets</topic><topic>Neural Networks (Computer)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smalz, Robert</creatorcontrib><creatorcontrib>Conrad, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smalz, Robert</au><au>Conrad, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary credit apportionment and its application to time-dependent neural processing</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>1995</date><risdate>1995</risdate><volume>34</volume><issue>1-3</issue><spage>161</spage><epage>172</epage><pages>161-172</pages><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>A new approach to training recurrent neural networks is applied to temporal neural processing problems. Our method combines Darwinian variation and selection with a credit apportionment mechanism for assigning credit to individual neurons within the groups of competing networks. Interconnections between the networks allow the outputs of neurons in one network to be available to the neurons in other networks. The firing behavior of the neurons in a variety of networks is compared with the corresponding neurons in high performing networks for specific input contexts. Payoffs accorded to neurons in one network can thus be shared with neurons in other networks. Only the best neurons over the entire repertoire of networks are allowed to pass their crucial function-determining parameters on to other neurons. The algorithm is demonstrated with connectionist-type units on several temporal processing tasks and compared to genetic algorithms.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>7727698</pmid><doi>10.1016/0303-2647(94)01443-B</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-2647
ispartof BioSystems, 1995, Vol.34 (1-3), p.161-172
issn 0303-2647
1872-8324
language eng
recordid cdi_proquest_miscellaneous_77234118
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Animals
Biological Evolution
Credit apportionment
Evolutionary learning
Feedback
Humans
Learning - physiology
Learning algorithms
Memory - physiology
Models, Neurological
Nerve Net - physiology
Neural nets
Neural Networks (Computer)
title Evolutionary credit apportionment and its application to time-dependent neural processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20credit%20apportionment%20and%20its%20application%20to%20time-dependent%20neural%20processing&rft.jtitle=BioSystems&rft.au=Smalz,%20Robert&rft.date=1995&rft.volume=34&rft.issue=1-3&rft.spage=161&rft.epage=172&rft.pages=161-172&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/0303-2647(94)01443-B&rft_dat=%3Cproquest_cross%3E77234118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77234118&rft_id=info:pmid/7727698&rft_els_id=030326479401443B&rfr_iscdi=true