The association of human fibulin-1 with elastic fibers: an immunohistological, ultrastructural, and RNA study

We examined the pattern of fibulin-1 mRNA and protein expression in human tissues and cell lines. Fibulin-1 transcripts were found in RNA isolated from most tissues and a variety of cultured cells, including fibroblasts, smooth muscle cells, and several epithelial cell lines, but not endothelial cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of histochemistry and cytochemistry 1995-04, Vol.43 (4), p.401-411
Hauptverfasser: Roark, EF, Keene, DR, Haudenschild, CC, Godyna, S, Little, CD, Argraves, WS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examined the pattern of fibulin-1 mRNA and protein expression in human tissues and cell lines. Fibulin-1 transcripts were found in RNA isolated from most tissues and a variety of cultured cells, including fibroblasts, smooth muscle cells, and several epithelial cell lines, but not endothelial cells, lymphomyloid cells, or a number of carcinoma and melanoma lines. Immunohistochemical analysis showed that fibulin-1 is an intercellular component of connective tissues, predominantly associated with matrix fibers in tissues such as the cervix, dermis, intimal and medial layers of blood vessels, heart valves, meningeal tissue of the brain, Wharton's jelly of the umbilical cord, testis, and lung. Most of the fibers that were immunoreactive with fibulin-1 antibodies also stained with antibodies to the elastic fiber proteins elastin and fibrillin, as well as with Verhoeff's elastin stain. Immunoelectron microscopic analysis of elastin fibers of skin and saphenous vein revealed that fibulin-1 was located within the amorphous core of the fibers, similar to elastin, but it was not in the fibrillin-containing, elastin-associated microfibrils. Our finding that fibulin-1 is an elastic fiber component suggests several possible new functions for fibulin-1, e.g., that it is a structural protein that contributes to the elastic properties of connective tissue fibers or that is involved with the process of fibrogenesis.
ISSN:0022-1554
1551-5044
DOI:10.1177/43.4.7534784