Inorganic Phosphate Promotes Redox Cycling of Iron in Liver Microsomes: Effects on Free-Radical Reactions

The phosphate buffer concentration used in spin trapping experiments with liver microsomes markedly influenced rates of free radical formation from ethanol and dimethylsulfoxide, but not from carbon tetrachloride. Effects of phosphate concentration on ethanol radical formation were abolished by addi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 1995-02, Vol.316 (2), p.758-764
Hauptverfasser: Reinke, L.A., Moore, D.R., Rau, J.M., Mccay, P.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phosphate buffer concentration used in spin trapping experiments with liver microsomes markedly influenced rates of free radical formation from ethanol and dimethylsulfoxide, but not from carbon tetrachloride. Effects of phosphate concentration on ethanol radical formation were abolished by addition of deferoxamine or bathophenanthrolene, indicating that an iron-phosphate complex might be involved. High concentrations of phosphate stimulated rates of microsomal Fe+3 reduction and facilitated the mobilization of microsomal nonheme iron, but had little effect on a variety of microsomal monooxygenase enzyme activities. Although microsomal oxygen utilization and superoxide production were relatively unaffected by phosphate, hydrogen peroxide concentrations were markedly decreased in the presence of high concentrations of phosphate. Taken together, the data suggest that a ferric-phosphate complex may be enzymatically reduced by microsomal enzymes and NADPH. Reoxidation of ferrous ion is nonenzymatically promoted by phosphate and/or H2O2 produced by the microsomes. During the process of reoxidation, one or more oxidizing intermediates may be formed which initiate secondary free radical reactions. Although the reactivity of the intermediate(s) is similar to that of the hydroxyl radical, no spin trapping evidence was obtained to support this assignment.
ISSN:0003-9861
1096-0384
DOI:10.1006/abbi.1995.1101