Sonically produced heat in a fluid with bulk viscosity and shear viscosity
In a viscous fluid, sound produces heat in a spatial pattern which, in general, depends on the relative magnitudes of the shear viscosity coefficient eta and the bulk viscosity coefficient B'. It is well known that when the particle velocity components ui relative to Cartesian coordinates xi ar...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 1986-10, Vol.80 (4), p.1133-1139 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1139 |
---|---|
container_issue | 4 |
container_start_page | 1133 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 80 |
creator | NYBORG, W. L |
description | In a viscous fluid, sound produces heat in a spatial pattern which, in general, depends on the relative magnitudes of the shear viscosity coefficient eta and the bulk viscosity coefficient B'. It is well known that when the particle velocity components ui relative to Cartesian coordinates xi are given for an arbitrary sound field, or any field of flow, the volume rate of heat production qv can be determined from a dissipation function in the form B'T1 + eta T2. Here, T1 and T2 are quadratic functions involving derivatives of the type delta ui/delta xj. In this paper, examples are discussed for continuous monofrequency sound fields, including crossed plane waves, as well as focused and unfocused fields. In these examples, spatial distributions of the time-averaged quantity [qv] for media in which the loss mechanism is primarily bulk viscosity are compared to those for media in which shear viscosity dominates. |
doi_str_mv | 10.1121/1.393803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77121028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77121028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-3325afbea1ebe3721f8c64ebd27c9d4a72f13bd7ea29bff56bb157a4dc278efa3</originalsourceid><addsrcrecordid>eNpFkN1LwzAUxYMoc07Bf0DIg4gvnblJ2zSPMvxk4IP6XPLJolk7m1bZf29kZT5d7j0_DucehM6BzAEo3MCcCVYRdoCmUFCSVQXND9GUEAJZLsryGJ3E-JHWomJigiaMcxBUTNHza9t4LUPY4k3XmkFbg1dW9tg3WGIXBm_wj-9XWA3hE3_7qNvo-y2WjcExgd3_7RQdORmiPRvnDL3f370tHrPly8PT4naZaUZ4nzFGC-mUlWCVZZyCq3SZW2Uo18LkklMHTBluJRXKuaJUCgouc6Mpr6yTbIaudr4p8NdgY1-vUwQbgmxsO8Q6vUaB0CqB1ztQd22MnXX1pvNr2W1rIPVfbTXUu9oSejF6DmptzR4ce0r65ajLmNpynWy0j3uMCygqQtgvyTN0ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77121028</pqid></control><display><type>article</type><title>Sonically produced heat in a fluid with bulk viscosity and shear viscosity</title><source>MEDLINE</source><source>Acoustical Society of America (AIP)</source><creator>NYBORG, W. L</creator><creatorcontrib>NYBORG, W. L</creatorcontrib><description>In a viscous fluid, sound produces heat in a spatial pattern which, in general, depends on the relative magnitudes of the shear viscosity coefficient eta and the bulk viscosity coefficient B'. It is well known that when the particle velocity components ui relative to Cartesian coordinates xi are given for an arbitrary sound field, or any field of flow, the volume rate of heat production qv can be determined from a dissipation function in the form B'T1 + eta T2. Here, T1 and T2 are quadratic functions involving derivatives of the type delta ui/delta xj. In this paper, examples are discussed for continuous monofrequency sound fields, including crossed plane waves, as well as focused and unfocused fields. In these examples, spatial distributions of the time-averaged quantity [qv] for media in which the loss mechanism is primarily bulk viscosity are compared to those for media in which shear viscosity dominates.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.393803</identifier><identifier>PMID: 3771929</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Hot Temperature ; Mathematics ; Physics ; Pressure ; Ultrasonics ; Ultrasonics, quantum acoustics, and physical effects of sound ; Viscosity</subject><ispartof>The Journal of the Acoustical Society of America, 1986-10, Vol.80 (4), p.1133-1139</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-3325afbea1ebe3721f8c64ebd27c9d4a72f13bd7ea29bff56bb157a4dc278efa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7915800$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3771929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>NYBORG, W. L</creatorcontrib><title>Sonically produced heat in a fluid with bulk viscosity and shear viscosity</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>In a viscous fluid, sound produces heat in a spatial pattern which, in general, depends on the relative magnitudes of the shear viscosity coefficient eta and the bulk viscosity coefficient B'. It is well known that when the particle velocity components ui relative to Cartesian coordinates xi are given for an arbitrary sound field, or any field of flow, the volume rate of heat production qv can be determined from a dissipation function in the form B'T1 + eta T2. Here, T1 and T2 are quadratic functions involving derivatives of the type delta ui/delta xj. In this paper, examples are discussed for continuous monofrequency sound fields, including crossed plane waves, as well as focused and unfocused fields. In these examples, spatial distributions of the time-averaged quantity [qv] for media in which the loss mechanism is primarily bulk viscosity are compared to those for media in which shear viscosity dominates.</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hot Temperature</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Pressure</subject><subject>Ultrasonics</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Viscosity</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkN1LwzAUxYMoc07Bf0DIg4gvnblJ2zSPMvxk4IP6XPLJolk7m1bZf29kZT5d7j0_DucehM6BzAEo3MCcCVYRdoCmUFCSVQXND9GUEAJZLsryGJ3E-JHWomJigiaMcxBUTNHza9t4LUPY4k3XmkFbg1dW9tg3WGIXBm_wj-9XWA3hE3_7qNvo-y2WjcExgd3_7RQdORmiPRvnDL3f370tHrPly8PT4naZaUZ4nzFGC-mUlWCVZZyCq3SZW2Uo18LkklMHTBluJRXKuaJUCgouc6Mpr6yTbIaudr4p8NdgY1-vUwQbgmxsO8Q6vUaB0CqB1ztQd22MnXX1pvNr2W1rIPVfbTXUu9oSejF6DmptzR4ce0r65ajLmNpynWy0j3uMCygqQtgvyTN0ww</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>NYBORG, W. L</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BM</scope></search><sort><creationdate>19861001</creationdate><title>Sonically produced heat in a fluid with bulk viscosity and shear viscosity</title><author>NYBORG, W. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-3325afbea1ebe3721f8c64ebd27c9d4a72f13bd7ea29bff56bb157a4dc278efa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hot Temperature</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Pressure</topic><topic>Ultrasonics</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NYBORG, W. L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NYBORG, W. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sonically produced heat in a fluid with bulk viscosity and shear viscosity</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>1986-10-01</date><risdate>1986</risdate><volume>80</volume><issue>4</issue><spage>1133</spage><epage>1139</epage><pages>1133-1139</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>In a viscous fluid, sound produces heat in a spatial pattern which, in general, depends on the relative magnitudes of the shear viscosity coefficient eta and the bulk viscosity coefficient B'. It is well known that when the particle velocity components ui relative to Cartesian coordinates xi are given for an arbitrary sound field, or any field of flow, the volume rate of heat production qv can be determined from a dissipation function in the form B'T1 + eta T2. Here, T1 and T2 are quadratic functions involving derivatives of the type delta ui/delta xj. In this paper, examples are discussed for continuous monofrequency sound fields, including crossed plane waves, as well as focused and unfocused fields. In these examples, spatial distributions of the time-averaged quantity [qv] for media in which the loss mechanism is primarily bulk viscosity are compared to those for media in which shear viscosity dominates.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>3771929</pmid><doi>10.1121/1.393803</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 1986-10, Vol.80 (4), p.1133-1139 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_77121028 |
source | MEDLINE; Acoustical Society of America (AIP) |
subjects | Acoustics Exact sciences and technology Fundamental areas of phenomenology (including applications) Hot Temperature Mathematics Physics Pressure Ultrasonics Ultrasonics, quantum acoustics, and physical effects of sound Viscosity |
title | Sonically produced heat in a fluid with bulk viscosity and shear viscosity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sonically%20produced%20heat%20in%20a%20fluid%20with%20bulk%20viscosity%20and%20shear%20viscosity&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=NYBORG,%20W.%20L&rft.date=1986-10-01&rft.volume=80&rft.issue=4&rft.spage=1133&rft.epage=1139&rft.pages=1133-1139&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.393803&rft_dat=%3Cproquest_cross%3E77121028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77121028&rft_id=info:pmid/3771929&rfr_iscdi=true |