Insulin-mediated GLUT4 Translocation Is Dependent on the Microtubule Network
The GLUT4 facilitative glucose transporter is recruited to the plasma membrane by insulin. This process depends primarily on the exocytosis of a specialized pool of vesicles containing GLUT4 in their membranes. The mechanism of GLUT4 vesicle exocytosis in response to insulin is not understood. To de...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2001-04, Vol.276 (14), p.10706-10714 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10714 |
---|---|
container_issue | 14 |
container_start_page | 10706 |
container_title | The Journal of biological chemistry |
container_volume | 276 |
creator | Olson, Ann Louise Trumbly, Alan R. Gibson, George V. |
description | The GLUT4 facilitative glucose transporter is recruited to the plasma membrane by insulin. This process depends primarily on the exocytosis of a specialized pool of vesicles containing GLUT4 in their membranes. The mechanism of GLUT4 vesicle exocytosis in response to insulin is not understood. To determine whether GLUT4 exocytosis is dependent on intact microtubule network, we measured insulin-mediated GLUT4 exocytosis in 3T3-L1 adipocytes in which the microtubule network was depolymerized by pretreatment with nocodazole. Insulin-mediated GLUT4 translocation was inhibited by more than 80% in nocodazole-treated cells. Phosphorylation of insulin receptor substrate 1 (IRS-1), activation of IRS-1 associated phosphatidylinositide 3-kinase, and phosphorylation of protein kinase B/Akt-1 were not inhibited by nocodazole treatment indicating that the microtubule network was not required for proximal insulin signaling. An intact microtubule network is specifically required for insulin-mediated GLUT4 translocation since nocodazole treatment did not affect insulin-mediated GLUT1 translocation or adipsin secretion. By using in vitro microtubule binding, we demonstrated that both GLUT4 vesicles and IRS-1 bind specifically to microtubules, implicating microtubules in both insulin signaling and GLUT4 translocation. Vesicle binding to microtubules was not mediated through direct binding of GLUT4 or insulin-responsive aminopeptidase to microtubules. A model microtubule-dependent translocation of GLUT4 is proposed. |
doi_str_mv | 10.1074/jbc.M007610200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77018478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819345028</els_id><sourcerecordid>77018478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-5b14aa6e1405f9a390cfedae93d86cf2f4d2fa6559fc1ae5489933db448c51c13</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEYmNw5Yh6QNw67DbpxxHxOWnAZUjcojR1WUbXjiQF8e8J2iRO-GJZevzKfhg7RZgi5PxyVenpI0CeISQAe2yMUKRxKvB1n40BEozLRBQjduTcCkLxEg_ZCDHJi1SIMZvPOje0povXVBvlqY7u5y8LHi2s6lzba-VN30UzF93QhrqaOh-F2S8pejTa9n6ohpaiJ_JfvX0_ZgeNah2d7PqEvdzdLq4f4vnz_ez6ah5rkYCPRYVcqYyQg2hKlZagG6oVlWldZLpJGl4njcqEKBuNigQvyjJN64rzQgvUmE7YxTZ3Y_uPgZyXa-M0ta3qqB-czHPAgocPJ2y6BcOpzllq5MaatbLfEkH--pPBn_zzFxbOdslDFYz84TthATjfAkvztvwylmRler2ktUzyTCL_TYUsYMUWo6Dh05CVThvqdJBsSXtZ9-a_E34A9vSKAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77018478</pqid></control><display><type>article</type><title>Insulin-mediated GLUT4 Translocation Is Dependent on the Microtubule Network</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Olson, Ann Louise ; Trumbly, Alan R. ; Gibson, George V.</creator><creatorcontrib>Olson, Ann Louise ; Trumbly, Alan R. ; Gibson, George V.</creatorcontrib><description>The GLUT4 facilitative glucose transporter is recruited to the plasma membrane by insulin. This process depends primarily on the exocytosis of a specialized pool of vesicles containing GLUT4 in their membranes. The mechanism of GLUT4 vesicle exocytosis in response to insulin is not understood. To determine whether GLUT4 exocytosis is dependent on intact microtubule network, we measured insulin-mediated GLUT4 exocytosis in 3T3-L1 adipocytes in which the microtubule network was depolymerized by pretreatment with nocodazole. Insulin-mediated GLUT4 translocation was inhibited by more than 80% in nocodazole-treated cells. Phosphorylation of insulin receptor substrate 1 (IRS-1), activation of IRS-1 associated phosphatidylinositide 3-kinase, and phosphorylation of protein kinase B/Akt-1 were not inhibited by nocodazole treatment indicating that the microtubule network was not required for proximal insulin signaling. An intact microtubule network is specifically required for insulin-mediated GLUT4 translocation since nocodazole treatment did not affect insulin-mediated GLUT1 translocation or adipsin secretion. By using in vitro microtubule binding, we demonstrated that both GLUT4 vesicles and IRS-1 bind specifically to microtubules, implicating microtubules in both insulin signaling and GLUT4 translocation. Vesicle binding to microtubules was not mediated through direct binding of GLUT4 or insulin-responsive aminopeptidase to microtubules. A model microtubule-dependent translocation of GLUT4 is proposed.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M007610200</identifier><identifier>PMID: 11278355</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3T3 Cells ; Animals ; Biological Transport - drug effects ; Exocytosis ; Glucose Transporter Type 4 ; Insulin - metabolism ; Insulin - pharmacology ; Mice ; Microtubules - metabolism ; Monosaccharide Transport Proteins - metabolism ; Muscle Proteins ; Signal Transduction</subject><ispartof>The Journal of biological chemistry, 2001-04, Vol.276 (14), p.10706-10714</ispartof><rights>2001 © 2001 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-5b14aa6e1405f9a390cfedae93d86cf2f4d2fa6559fc1ae5489933db448c51c13</citedby><cites>FETCH-LOGICAL-c520t-5b14aa6e1405f9a390cfedae93d86cf2f4d2fa6559fc1ae5489933db448c51c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11278355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olson, Ann Louise</creatorcontrib><creatorcontrib>Trumbly, Alan R.</creatorcontrib><creatorcontrib>Gibson, George V.</creatorcontrib><title>Insulin-mediated GLUT4 Translocation Is Dependent on the Microtubule Network</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The GLUT4 facilitative glucose transporter is recruited to the plasma membrane by insulin. This process depends primarily on the exocytosis of a specialized pool of vesicles containing GLUT4 in their membranes. The mechanism of GLUT4 vesicle exocytosis in response to insulin is not understood. To determine whether GLUT4 exocytosis is dependent on intact microtubule network, we measured insulin-mediated GLUT4 exocytosis in 3T3-L1 adipocytes in which the microtubule network was depolymerized by pretreatment with nocodazole. Insulin-mediated GLUT4 translocation was inhibited by more than 80% in nocodazole-treated cells. Phosphorylation of insulin receptor substrate 1 (IRS-1), activation of IRS-1 associated phosphatidylinositide 3-kinase, and phosphorylation of protein kinase B/Akt-1 were not inhibited by nocodazole treatment indicating that the microtubule network was not required for proximal insulin signaling. An intact microtubule network is specifically required for insulin-mediated GLUT4 translocation since nocodazole treatment did not affect insulin-mediated GLUT1 translocation or adipsin secretion. By using in vitro microtubule binding, we demonstrated that both GLUT4 vesicles and IRS-1 bind specifically to microtubules, implicating microtubules in both insulin signaling and GLUT4 translocation. Vesicle binding to microtubules was not mediated through direct binding of GLUT4 or insulin-responsive aminopeptidase to microtubules. A model microtubule-dependent translocation of GLUT4 is proposed.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Biological Transport - drug effects</subject><subject>Exocytosis</subject><subject>Glucose Transporter Type 4</subject><subject>Insulin - metabolism</subject><subject>Insulin - pharmacology</subject><subject>Mice</subject><subject>Microtubules - metabolism</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Muscle Proteins</subject><subject>Signal Transduction</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1PwzAMhiMEYmNw5Yh6QNw67DbpxxHxOWnAZUjcojR1WUbXjiQF8e8J2iRO-GJZevzKfhg7RZgi5PxyVenpI0CeISQAe2yMUKRxKvB1n40BEozLRBQjduTcCkLxEg_ZCDHJi1SIMZvPOje0povXVBvlqY7u5y8LHi2s6lzba-VN30UzF93QhrqaOh-F2S8pejTa9n6ohpaiJ_JfvX0_ZgeNah2d7PqEvdzdLq4f4vnz_ez6ah5rkYCPRYVcqYyQg2hKlZagG6oVlWldZLpJGl4njcqEKBuNigQvyjJN64rzQgvUmE7YxTZ3Y_uPgZyXa-M0ta3qqB-czHPAgocPJ2y6BcOpzllq5MaatbLfEkH--pPBn_zzFxbOdslDFYz84TthATjfAkvztvwylmRler2ktUzyTCL_TYUsYMUWo6Dh05CVThvqdJBsSXtZ9-a_E34A9vSKAQ</recordid><startdate>20010406</startdate><enddate>20010406</enddate><creator>Olson, Ann Louise</creator><creator>Trumbly, Alan R.</creator><creator>Gibson, George V.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010406</creationdate><title>Insulin-mediated GLUT4 Translocation Is Dependent on the Microtubule Network</title><author>Olson, Ann Louise ; Trumbly, Alan R. ; Gibson, George V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-5b14aa6e1405f9a390cfedae93d86cf2f4d2fa6559fc1ae5489933db448c51c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Biological Transport - drug effects</topic><topic>Exocytosis</topic><topic>Glucose Transporter Type 4</topic><topic>Insulin - metabolism</topic><topic>Insulin - pharmacology</topic><topic>Mice</topic><topic>Microtubules - metabolism</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Muscle Proteins</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olson, Ann Louise</creatorcontrib><creatorcontrib>Trumbly, Alan R.</creatorcontrib><creatorcontrib>Gibson, George V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olson, Ann Louise</au><au>Trumbly, Alan R.</au><au>Gibson, George V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin-mediated GLUT4 Translocation Is Dependent on the Microtubule Network</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2001-04-06</date><risdate>2001</risdate><volume>276</volume><issue>14</issue><spage>10706</spage><epage>10714</epage><pages>10706-10714</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The GLUT4 facilitative glucose transporter is recruited to the plasma membrane by insulin. This process depends primarily on the exocytosis of a specialized pool of vesicles containing GLUT4 in their membranes. The mechanism of GLUT4 vesicle exocytosis in response to insulin is not understood. To determine whether GLUT4 exocytosis is dependent on intact microtubule network, we measured insulin-mediated GLUT4 exocytosis in 3T3-L1 adipocytes in which the microtubule network was depolymerized by pretreatment with nocodazole. Insulin-mediated GLUT4 translocation was inhibited by more than 80% in nocodazole-treated cells. Phosphorylation of insulin receptor substrate 1 (IRS-1), activation of IRS-1 associated phosphatidylinositide 3-kinase, and phosphorylation of protein kinase B/Akt-1 were not inhibited by nocodazole treatment indicating that the microtubule network was not required for proximal insulin signaling. An intact microtubule network is specifically required for insulin-mediated GLUT4 translocation since nocodazole treatment did not affect insulin-mediated GLUT1 translocation or adipsin secretion. By using in vitro microtubule binding, we demonstrated that both GLUT4 vesicles and IRS-1 bind specifically to microtubules, implicating microtubules in both insulin signaling and GLUT4 translocation. Vesicle binding to microtubules was not mediated through direct binding of GLUT4 or insulin-responsive aminopeptidase to microtubules. A model microtubule-dependent translocation of GLUT4 is proposed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11278355</pmid><doi>10.1074/jbc.M007610200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2001-04, Vol.276 (14), p.10706-10714 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_77018478 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | 3T3 Cells Animals Biological Transport - drug effects Exocytosis Glucose Transporter Type 4 Insulin - metabolism Insulin - pharmacology Mice Microtubules - metabolism Monosaccharide Transport Proteins - metabolism Muscle Proteins Signal Transduction |
title | Insulin-mediated GLUT4 Translocation Is Dependent on the Microtubule Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin-mediated%20GLUT4%20Translocation%20Is%20Dependent%20on%20the%20Microtubule%20Network&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Olson,%20Ann%20Louise&rft.date=2001-04-06&rft.volume=276&rft.issue=14&rft.spage=10706&rft.epage=10714&rft.pages=10706-10714&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M007610200&rft_dat=%3Cproquest_cross%3E77018478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77018478&rft_id=info:pmid/11278355&rft_els_id=S0021925819345028&rfr_iscdi=true |