Two-point T1 measurement: Wide-coverage optimizations by stochastic simulations
Stochastic reliability of T1 measurement from image signal ratios is examined in the ideal case by stochastic simulations in the context of wide‐coverage optimizations. Precise measurements prove to be accurate, and accurate ones precise. Sign‐preserved inversion‐recovery (IR)/non‐IR techniques are...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 1986-08, Vol.3 (4), p.518-533 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 533 |
---|---|
container_issue | 4 |
container_start_page | 518 |
container_title | Magnetic resonance in medicine |
container_volume | 3 |
creator | Lin, Max S. Fletcher, James W. Donati, Robert M. |
description | Stochastic reliability of T1 measurement from image signal ratios is examined in the ideal case by stochastic simulations in the context of wide‐coverage optimizations. Precise measurements prove to be accurate, and accurate ones precise. Sign‐preserved inversion‐recovery (IR)/non‐IR techniques are the best ration method, reciprocal non‐IR/IR ones being equivalent, but inconvenient. Wide‐coverage optima are relatively unsharp. Suggested guidelines for covering the 150‐ to 1500‐ms T1 band are minimal relevant TE; T1 about 400 ms; effective repetition times about in the ratio, TR2(IR)/TR1 (non‐IR) = 2.5–3.0, and in a sum as long as possible up to about TR1 + TR2 = 3.5–4.0 s; signal‐averaging after and only after TR1 + TR2 has been lengthened to the said region. Also suggested are different guidelines for covering T1 bands, 120–1200 and 200–1800 ms. Typically, precisions and accuracies improve linearly or faster with increasing S/N and (S/N)2, respectively. Unnecessarily high pixel resolutions or thin slicings exact great penalties in accuracies. Progressively shortening TR1 eventually transforms a wide coverage into a sharp targeting with small potential gains in a narrow T1 locality and large compromises almost everywhere else. The simulations yield an insight into applicabilities of standard error propagation analyses in two‐point T1 measurement. © 1986 Academic Press, Inc. |
doi_str_mv | 10.1002/mrm.1910030405 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_77015588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77015588</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2385-69f35c9198cc6991f75032548e31f515cb4ff95b35091a7ce806bafc89a204353</originalsourceid><addsrcrecordid>eNpFkT1PwzAURS0EgvKxsiFlQGyB59iObTaEoCABlUqho-UYBwxxEuIEKL-eoFTt5Gedc9_wLkKHGE4xQHLmG3-KZT8SoMA20AizJIkTJukmGgGnEBMs6Q7aDeEdAKTkdBttE065wGSEJrPvKq4rV7bRDEfe6tA11tuyPY_m7sXGpvqyjX61UVW3zrtf3bqqDFG2iEJbmTcdWmei4HxXDGQfbeW6CPZg-e6hp-ur2eVNfDcZ315e3MUuIYLFqcwJMxJLYUwqJc45A5IwKizBOcPMZDTPJcsIA4k1N1ZAmuncCKkToISRPXQy7K2b6rOzoVXeBWOLQpe26oLiHDBjQvTi0VLsMm9fVN04r5uFWl6g58dLroPRRd7o0riw0rhMMBDea3LQvl1hFyuMQf23oPoW1LoFdT-9X__6bDxkXWjtzyqrmw-VcsKZmj-MVfo8f-z7EWpK_gDdUomV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77015588</pqid></control><display><type>article</type><title>Two-point T1 measurement: Wide-coverage optimizations by stochastic simulations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lin, Max S. ; Fletcher, James W. ; Donati, Robert M.</creator><creatorcontrib>Lin, Max S. ; Fletcher, James W. ; Donati, Robert M.</creatorcontrib><description>Stochastic reliability of T1 measurement from image signal ratios is examined in the ideal case by stochastic simulations in the context of wide‐coverage optimizations. Precise measurements prove to be accurate, and accurate ones precise. Sign‐preserved inversion‐recovery (IR)/non‐IR techniques are the best ration method, reciprocal non‐IR/IR ones being equivalent, but inconvenient. Wide‐coverage optima are relatively unsharp. Suggested guidelines for covering the 150‐ to 1500‐ms T1 band are minimal relevant TE; T1 about 400 ms; effective repetition times about in the ratio, TR2(IR)/TR1 (non‐IR) = 2.5–3.0, and in a sum as long as possible up to about TR1 + TR2 = 3.5–4.0 s; signal‐averaging after and only after TR1 + TR2 has been lengthened to the said region. Also suggested are different guidelines for covering T1 bands, 120–1200 and 200–1800 ms. Typically, precisions and accuracies improve linearly or faster with increasing S/N and (S/N)2, respectively. Unnecessarily high pixel resolutions or thin slicings exact great penalties in accuracies. Progressively shortening TR1 eventually transforms a wide coverage into a sharp targeting with small potential gains in a narrow T1 locality and large compromises almost everywhere else. The simulations yield an insight into applicabilities of standard error propagation analyses in two‐point T1 measurement. © 1986 Academic Press, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.1910030405</identifier><identifier>PMID: 3747813</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Baltimore: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biological and medical sciences ; Biometry ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Spectroscopy ; Medical sciences ; Probability ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Stochastic Processes</subject><ispartof>Magnetic resonance in medicine, 1986-08, Vol.3 (4), p.518-533</ispartof><rights>Copyright © 1986 Wiley‐Liss, Inc., A Wiley Company</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.1910030405$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.1910030405$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7921037$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3747813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Max S.</creatorcontrib><creatorcontrib>Fletcher, James W.</creatorcontrib><creatorcontrib>Donati, Robert M.</creatorcontrib><title>Two-point T1 measurement: Wide-coverage optimizations by stochastic simulations</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Stochastic reliability of T1 measurement from image signal ratios is examined in the ideal case by stochastic simulations in the context of wide‐coverage optimizations. Precise measurements prove to be accurate, and accurate ones precise. Sign‐preserved inversion‐recovery (IR)/non‐IR techniques are the best ration method, reciprocal non‐IR/IR ones being equivalent, but inconvenient. Wide‐coverage optima are relatively unsharp. Suggested guidelines for covering the 150‐ to 1500‐ms T1 band are minimal relevant TE; T1 about 400 ms; effective repetition times about in the ratio, TR2(IR)/TR1 (non‐IR) = 2.5–3.0, and in a sum as long as possible up to about TR1 + TR2 = 3.5–4.0 s; signal‐averaging after and only after TR1 + TR2 has been lengthened to the said region. Also suggested are different guidelines for covering T1 bands, 120–1200 and 200–1800 ms. Typically, precisions and accuracies improve linearly or faster with increasing S/N and (S/N)2, respectively. Unnecessarily high pixel resolutions or thin slicings exact great penalties in accuracies. Progressively shortening TR1 eventually transforms a wide coverage into a sharp targeting with small potential gains in a narrow T1 locality and large compromises almost everywhere else. The simulations yield an insight into applicabilities of standard error propagation analyses in two‐point T1 measurement. © 1986 Academic Press, Inc.</description><subject>Biological and medical sciences</subject><subject>Biometry</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical sciences</subject><subject>Probability</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Stochastic Processes</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkT1PwzAURS0EgvKxsiFlQGyB59iObTaEoCABlUqho-UYBwxxEuIEKL-eoFTt5Gedc9_wLkKHGE4xQHLmG3-KZT8SoMA20AizJIkTJukmGgGnEBMs6Q7aDeEdAKTkdBttE065wGSEJrPvKq4rV7bRDEfe6tA11tuyPY_m7sXGpvqyjX61UVW3zrtf3bqqDFG2iEJbmTcdWmei4HxXDGQfbeW6CPZg-e6hp-ur2eVNfDcZ315e3MUuIYLFqcwJMxJLYUwqJc45A5IwKizBOcPMZDTPJcsIA4k1N1ZAmuncCKkToISRPXQy7K2b6rOzoVXeBWOLQpe26oLiHDBjQvTi0VLsMm9fVN04r5uFWl6g58dLroPRRd7o0riw0rhMMBDea3LQvl1hFyuMQf23oPoW1LoFdT-9X__6bDxkXWjtzyqrmw-VcsKZmj-MVfo8f-z7EWpK_gDdUomV</recordid><startdate>198608</startdate><enddate>198608</enddate><creator>Lin, Max S.</creator><creator>Fletcher, James W.</creator><creator>Donati, Robert M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Williams & Wilkins</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>198608</creationdate><title>Two-point T1 measurement: Wide-coverage optimizations by stochastic simulations</title><author>Lin, Max S. ; Fletcher, James W. ; Donati, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2385-69f35c9198cc6991f75032548e31f515cb4ff95b35091a7ce806bafc89a204353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Biological and medical sciences</topic><topic>Biometry</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical sciences</topic><topic>Probability</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Max S.</creatorcontrib><creatorcontrib>Fletcher, James W.</creatorcontrib><creatorcontrib>Donati, Robert M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Max S.</au><au>Fletcher, James W.</au><au>Donati, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-point T1 measurement: Wide-coverage optimizations by stochastic simulations</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>1986-08</date><risdate>1986</risdate><volume>3</volume><issue>4</issue><spage>518</spage><epage>533</epage><pages>518-533</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Stochastic reliability of T1 measurement from image signal ratios is examined in the ideal case by stochastic simulations in the context of wide‐coverage optimizations. Precise measurements prove to be accurate, and accurate ones precise. Sign‐preserved inversion‐recovery (IR)/non‐IR techniques are the best ration method, reciprocal non‐IR/IR ones being equivalent, but inconvenient. Wide‐coverage optima are relatively unsharp. Suggested guidelines for covering the 150‐ to 1500‐ms T1 band are minimal relevant TE; T1 about 400 ms; effective repetition times about in the ratio, TR2(IR)/TR1 (non‐IR) = 2.5–3.0, and in a sum as long as possible up to about TR1 + TR2 = 3.5–4.0 s; signal‐averaging after and only after TR1 + TR2 has been lengthened to the said region. Also suggested are different guidelines for covering T1 bands, 120–1200 and 200–1800 ms. Typically, precisions and accuracies improve linearly or faster with increasing S/N and (S/N)2, respectively. Unnecessarily high pixel resolutions or thin slicings exact great penalties in accuracies. Progressively shortening TR1 eventually transforms a wide coverage into a sharp targeting with small potential gains in a narrow T1 locality and large compromises almost everywhere else. The simulations yield an insight into applicabilities of standard error propagation analyses in two‐point T1 measurement. © 1986 Academic Press, Inc.</abstract><cop>Baltimore</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>3747813</pmid><doi>10.1002/mrm.1910030405</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 1986-08, Vol.3 (4), p.518-533 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_77015588 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biological and medical sciences Biometry Humans Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Spectroscopy Medical sciences Probability Radiodiagnosis. Nmr imagery. Nmr spectrometry Stochastic Processes |
title | Two-point T1 measurement: Wide-coverage optimizations by stochastic simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-point%20T1%20measurement:%20Wide-coverage%20optimizations%20by%20stochastic%20simulations&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Lin,%20Max%20S.&rft.date=1986-08&rft.volume=3&rft.issue=4&rft.spage=518&rft.epage=533&rft.pages=518-533&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.1910030405&rft_dat=%3Cproquest_pubme%3E77015588%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77015588&rft_id=info:pmid/3747813&rfr_iscdi=true |