Application of time delay spectrometry for rough surface characterization
This paper describes the design and performance of an ultrasound measurement system, utilizing a swept frequency excitation signal, for analyzing the backscattered signal from planar rough surfaces. The implementation is in the form of a time delay spectrometry (TDS) system operating in reflection m...
Gespeichert in:
Veröffentlicht in: | Ultrasonics 2001-03, Vol.39 (2), p.101-108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 2 |
container_start_page | 101 |
container_title | Ultrasonics |
container_volume | 39 |
creator | Pedersen, P.C. Grebe, A. |
description | This paper describes the design and performance of an ultrasound measurement system, utilizing a swept frequency excitation signal, for analyzing the backscattered signal from planar rough surfaces. The implementation is in the form of a time delay spectrometry (TDS) system operating in reflection mode whose advantages are improved signal-to-noise ratio even with low peak power relative to conventional pulse-echo methods. Because of simultaneous transmission and reception, the TDS system requires two transducers. The TDS measurement system uses a swept frequency spectrum analyzer as the central analog processing unit. Both planar piston and focused transducers in the low MHz range were used for the measurements. Due to the statistical nature of rough surface backscatter, the mean of several statistically uncorrelated measurements is required to characterize the scattering behavior of a given rough surface. Backscatter data are obtained for a series of planar rough surfaces, in the form of scattering magnitude vs. frequency and vs. incident (=backscattered) angle. Analysis of the results reveals a good correlation between the root-mean-square (RMS) height and mean backscatter magnitude at 0° incident angle, and between the ratio of RMS height to correlation length and the difference in mean backscatter magnitude between 0° and 5°. |
doi_str_mv | 10.1016/S0041-624X(00)00044-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77003580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X00000445</els_id><sourcerecordid>77003580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-1a9ed5d27c37ff6c530aeaa3f07807e817022a2982ef0d903bcc7b4a6d6274e43</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVJyG4-fkKLIVDSg5ORLFn2KYSQNgsLObSF3sSsPGpU7JUr2YXNr4_3g_SY0zDwvPMOD2MfOVxz4OXNdwDJ81LIX1cAX2DaZK4-sDmvtMzruqyO2PwNmbHTlP4AcFnx4oTNOBcaSqHnbHHX9623OPiwzoLLBt9R1lCLmyz1ZIcYOhriJnMhZjGMv5-zNEaHljL7jBHtQNG_7NLn7Nhhm-jiMM_Yz68PP-4f8-XTt8X93TK3Uqkh51hToxqhbaGdK60qAAmxcKAr0FRxDUKgqCtBDpoaipW1eiWxbKZ_JcnijH3e3-1j-DtSGkznk6W2xTWFMRmtAQpVwQSqPWhjSCmSM330HcaN4WC2Ds3OodkKMgBm59CoKffpUDCuOmr-pw7SJuDyAGCy2LqIa-vTG1fVQqpt_e2eoknGP0_RJOtpbanxcRJrmuDfeeQVPsaOTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77003580</pqid></control><display><type>article</type><title>Application of time delay spectrometry for rough surface characterization</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Pedersen, P.C. ; Grebe, A.</creator><creatorcontrib>Pedersen, P.C. ; Grebe, A.</creatorcontrib><description>This paper describes the design and performance of an ultrasound measurement system, utilizing a swept frequency excitation signal, for analyzing the backscattered signal from planar rough surfaces. The implementation is in the form of a time delay spectrometry (TDS) system operating in reflection mode whose advantages are improved signal-to-noise ratio even with low peak power relative to conventional pulse-echo methods. Because of simultaneous transmission and reception, the TDS system requires two transducers. The TDS measurement system uses a swept frequency spectrum analyzer as the central analog processing unit. Both planar piston and focused transducers in the low MHz range were used for the measurements. Due to the statistical nature of rough surface backscatter, the mean of several statistically uncorrelated measurements is required to characterize the scattering behavior of a given rough surface. Backscatter data are obtained for a series of planar rough surfaces, in the form of scattering magnitude vs. frequency and vs. incident (=backscattered) angle. Analysis of the results reveals a good correlation between the root-mean-square (RMS) height and mean backscatter magnitude at 0° incident angle, and between the ratio of RMS height to correlation length and the difference in mean backscatter magnitude between 0° and 5°.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/S0041-624X(00)00044-5</identifier><identifier>PMID: 11270627</identifier><identifier>CODEN: ULTRA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustical measurements and instrumentation ; Acoustics ; Applied sciences ; Equipment Design ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Industrial metrology. Testing ; Linear sweep ; Mechanical engineering. Machine design ; Physics ; Remote sensing ; RMS height ; Rough surface ; Surface Properties ; Time delay spectrometry ; Time Factors ; Ultrasonics ; Ultrasonography - instrumentation</subject><ispartof>Ultrasonics, 2001-03, Vol.39 (2), p.101-108</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-1a9ed5d27c37ff6c530aeaa3f07807e817022a2982ef0d903bcc7b4a6d6274e43</citedby><cites>FETCH-LOGICAL-c455t-1a9ed5d27c37ff6c530aeaa3f07807e817022a2982ef0d903bcc7b4a6d6274e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0041-624X(00)00044-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=892450$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11270627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedersen, P.C.</creatorcontrib><creatorcontrib>Grebe, A.</creatorcontrib><title>Application of time delay spectrometry for rough surface characterization</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>This paper describes the design and performance of an ultrasound measurement system, utilizing a swept frequency excitation signal, for analyzing the backscattered signal from planar rough surfaces. The implementation is in the form of a time delay spectrometry (TDS) system operating in reflection mode whose advantages are improved signal-to-noise ratio even with low peak power relative to conventional pulse-echo methods. Because of simultaneous transmission and reception, the TDS system requires two transducers. The TDS measurement system uses a swept frequency spectrum analyzer as the central analog processing unit. Both planar piston and focused transducers in the low MHz range were used for the measurements. Due to the statistical nature of rough surface backscatter, the mean of several statistically uncorrelated measurements is required to characterize the scattering behavior of a given rough surface. Backscatter data are obtained for a series of planar rough surfaces, in the form of scattering magnitude vs. frequency and vs. incident (=backscattered) angle. Analysis of the results reveals a good correlation between the root-mean-square (RMS) height and mean backscatter magnitude at 0° incident angle, and between the ratio of RMS height to correlation length and the difference in mean backscatter magnitude between 0° and 5°.</description><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Applied sciences</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Industrial metrology. Testing</subject><subject>Linear sweep</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Remote sensing</subject><subject>RMS height</subject><subject>Rough surface</subject><subject>Surface Properties</subject><subject>Time delay spectrometry</subject><subject>Time Factors</subject><subject>Ultrasonics</subject><subject>Ultrasonography - instrumentation</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r3DAQhkVJyG4-fkKLIVDSg5ORLFn2KYSQNgsLObSF3sSsPGpU7JUr2YXNr4_3g_SY0zDwvPMOD2MfOVxz4OXNdwDJ81LIX1cAX2DaZK4-sDmvtMzruqyO2PwNmbHTlP4AcFnx4oTNOBcaSqHnbHHX9623OPiwzoLLBt9R1lCLmyz1ZIcYOhriJnMhZjGMv5-zNEaHljL7jBHtQNG_7NLn7Nhhm-jiMM_Yz68PP-4f8-XTt8X93TK3Uqkh51hToxqhbaGdK60qAAmxcKAr0FRxDUKgqCtBDpoaipW1eiWxbKZ_JcnijH3e3-1j-DtSGkznk6W2xTWFMRmtAQpVwQSqPWhjSCmSM330HcaN4WC2Ds3OodkKMgBm59CoKffpUDCuOmr-pw7SJuDyAGCy2LqIa-vTG1fVQqpt_e2eoknGP0_RJOtpbanxcRJrmuDfeeQVPsaOTQ</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Pedersen, P.C.</creator><creator>Grebe, A.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010301</creationdate><title>Application of time delay spectrometry for rough surface characterization</title><author>Pedersen, P.C. ; Grebe, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-1a9ed5d27c37ff6c530aeaa3f07807e817022a2982ef0d903bcc7b4a6d6274e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Applied sciences</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Industrial metrology. Testing</topic><topic>Linear sweep</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Remote sensing</topic><topic>RMS height</topic><topic>Rough surface</topic><topic>Surface Properties</topic><topic>Time delay spectrometry</topic><topic>Time Factors</topic><topic>Ultrasonics</topic><topic>Ultrasonography - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedersen, P.C.</creatorcontrib><creatorcontrib>Grebe, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedersen, P.C.</au><au>Grebe, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of time delay spectrometry for rough surface characterization</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2001-03-01</date><risdate>2001</risdate><volume>39</volume><issue>2</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><coden>ULTRA3</coden><abstract>This paper describes the design and performance of an ultrasound measurement system, utilizing a swept frequency excitation signal, for analyzing the backscattered signal from planar rough surfaces. The implementation is in the form of a time delay spectrometry (TDS) system operating in reflection mode whose advantages are improved signal-to-noise ratio even with low peak power relative to conventional pulse-echo methods. Because of simultaneous transmission and reception, the TDS system requires two transducers. The TDS measurement system uses a swept frequency spectrum analyzer as the central analog processing unit. Both planar piston and focused transducers in the low MHz range were used for the measurements. Due to the statistical nature of rough surface backscatter, the mean of several statistically uncorrelated measurements is required to characterize the scattering behavior of a given rough surface. Backscatter data are obtained for a series of planar rough surfaces, in the form of scattering magnitude vs. frequency and vs. incident (=backscattered) angle. Analysis of the results reveals a good correlation between the root-mean-square (RMS) height and mean backscatter magnitude at 0° incident angle, and between the ratio of RMS height to correlation length and the difference in mean backscatter magnitude between 0° and 5°.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>11270627</pmid><doi>10.1016/S0041-624X(00)00044-5</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-624X |
ispartof | Ultrasonics, 2001-03, Vol.39 (2), p.101-108 |
issn | 0041-624X 1874-9968 |
language | eng |
recordid | cdi_proquest_miscellaneous_77003580 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acoustical measurements and instrumentation Acoustics Applied sciences Equipment Design Exact sciences and technology Fundamental areas of phenomenology (including applications) Industrial metrology. Testing Linear sweep Mechanical engineering. Machine design Physics Remote sensing RMS height Rough surface Surface Properties Time delay spectrometry Time Factors Ultrasonics Ultrasonography - instrumentation |
title | Application of time delay spectrometry for rough surface characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20time%20delay%20spectrometry%20for%20rough%20surface%20characterization&rft.jtitle=Ultrasonics&rft.au=Pedersen,%20P.C.&rft.date=2001-03-01&rft.volume=39&rft.issue=2&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=0041-624X&rft.eissn=1874-9968&rft.coden=ULTRA3&rft_id=info:doi/10.1016/S0041-624X(00)00044-5&rft_dat=%3Cproquest_cross%3E77003580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77003580&rft_id=info:pmid/11270627&rft_els_id=S0041624X00000445&rfr_iscdi=true |