Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection
Background Gene delivery to the myocardium using blood‐borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents. Methods In the present study, w...
Gespeichert in:
Veröffentlicht in: | The journal of gene medicine 2001-01, Vol.3 (1), p.42-50 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | The journal of gene medicine |
container_volume | 3 |
creator | Nevo, Nathalie Chossat, Nathalie Gosgnach, Willy Logeart, Damien Mercadier, Jean-Jacques Michel, Jean-Baptiste |
description | Background
Gene delivery to the myocardium using blood‐borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents.
Methods
In the present study, we modeled the endothelial barrier in vitro using a human umbilical vein endothelial cell (HUVEC) monolayer seeded on a Transwell membrane as a support and diffusion of fluorescent dextrans as a permeability index. We used α‐thrombin (100 nM) as a pharmacological agent known to increase endothelial permeability and tested the barrier function of the endothelial cell monolayer on adenovector‐mediated luciferase gene transfer to underlying isolated cardiac myocytes.
Results
A confluent HUVEC monolayer represented a considerable physical barrier to dextran diffusion; it reduced the permeability of the micropore membrane alone to fluorescein isothiocyanate (FITC)‐labeled dextrans of molecular weights 4, 70, 150 and 2000 kDa by approximately 54, 78, 88 and 98%, respectively. α‐Thrombin (100 nM) increased the permeability coefficients (PEC) by 276, 264, 562 and 4166% for the same dextrans, respectively. A confluent HUVEC monolayer represented a major impediment to adenovector‐mediated luciferase gene transfer to cardiac myocytes, largely reducing gene transfer efficiency. However thrombin induced a nine‐fold increase in myocyte infection.
Conclusion
In our model, the endothelial cell monolayer represents a major impediment to myocyte adenovector‐mediated gene transfer which can be partially improved by pharmacologically increasing endothelial permeability. The Transwell model is therefore particularly useful for testing the efficiency of pharmacological agents in modulating adenovector passage through the endothelial barrier. Copyright © 2000 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/1521-2254(2000)9999:9999<::AID-JGM149>3.0.CO;2-A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76998820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>789703791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4519-667819930cdf2ab5761b30e79c94522d2a7750cd77a71d7e99bdfcc4260f144e3</originalsourceid><addsrcrecordid>eNqNkd2O0zAQhSMEYpeFV0AWFwguUmzHieOCkEqAbmGhCwLB3ch1Jrte8lPstJC3x1GqRUJI4IvxyD5zxuMvinJGZ4xS_oSlnMWcp-IRp5Q-VmHNx_BsPl-sXsZvlu-YUM-TGZ0V66c8XtyIjq9LboacKhULlX89iu54f0Upk3mubkdHjPFMJUl6HF2sWuNQe9teEGzLrr_E2uqaGKxrskXXoN7Y2vYDsc3WdXv0JEgIVpU1FlszkK4izdCZoUeiS2y7vXWhfo-m7xyxbRUS27V3o1uVrj3eO-wn0efXrz4Vp_HZerkqFmexESlTcZbJnCmVUFNWXG9SmbFNQlEqo0TKecm1lGm4lFJLVkpUalNWxgie0YoJgclJ9HDyDY_9vkPfQ2P9OIxusdt5kJlSec7pP4Xhq4SgGQvCB38Ir7qda8MQwFSmqGQqD6LzSWRc573DCrbONtoNwCiMKGHkAiMXGFHCSHEKAAElTCghAQrFGjgsguX9Q9_dpsHyt-GBXRB8nAQ_bI3D_zf8a7vDSTCNJ1Pre_x5bardN8hkIlP48n4JxWn69nypPsCL5Bey7cZn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196907198</pqid></control><display><type>article</type><title>Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nevo, Nathalie ; Chossat, Nathalie ; Gosgnach, Willy ; Logeart, Damien ; Mercadier, Jean-Jacques ; Michel, Jean-Baptiste</creator><creatorcontrib>Nevo, Nathalie ; Chossat, Nathalie ; Gosgnach, Willy ; Logeart, Damien ; Mercadier, Jean-Jacques ; Michel, Jean-Baptiste</creatorcontrib><description>Background
Gene delivery to the myocardium using blood‐borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents.
Methods
In the present study, we modeled the endothelial barrier in vitro using a human umbilical vein endothelial cell (HUVEC) monolayer seeded on a Transwell membrane as a support and diffusion of fluorescent dextrans as a permeability index. We used α‐thrombin (100 nM) as a pharmacological agent known to increase endothelial permeability and tested the barrier function of the endothelial cell monolayer on adenovector‐mediated luciferase gene transfer to underlying isolated cardiac myocytes.
Results
A confluent HUVEC monolayer represented a considerable physical barrier to dextran diffusion; it reduced the permeability of the micropore membrane alone to fluorescein isothiocyanate (FITC)‐labeled dextrans of molecular weights 4, 70, 150 and 2000 kDa by approximately 54, 78, 88 and 98%, respectively. α‐Thrombin (100 nM) increased the permeability coefficients (PEC) by 276, 264, 562 and 4166% for the same dextrans, respectively. A confluent HUVEC monolayer represented a major impediment to adenovector‐mediated luciferase gene transfer to cardiac myocytes, largely reducing gene transfer efficiency. However thrombin induced a nine‐fold increase in myocyte infection.
Conclusion
In our model, the endothelial cell monolayer represents a major impediment to myocyte adenovector‐mediated gene transfer which can be partially improved by pharmacologically increasing endothelial permeability. The Transwell model is therefore particularly useful for testing the efficiency of pharmacological agents in modulating adenovector passage through the endothelial barrier. Copyright © 2000 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1099-498X</identifier><identifier>EISSN: 1521-2254</identifier><identifier>DOI: 10.1002/1521-2254(2000)9999:9999<::AID-JGM149>3.0.CO;2-A</identifier><identifier>PMID: 11269335</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>adenoviral vector ; Adenoviridae - genetics ; Adenovirus ; Animals ; Capillary Permeability - drug effects ; cardiac myocytes ; Cells, Cultured ; endothelium ; Endothelium, Vascular - cytology ; Endothelium, Vascular - metabolism ; fluorescein isothiocyanate ; Gene therapy ; Gene Transfer Techniques ; Genetic Vectors ; Humans ; Male ; Muscle, Smooth - cytology ; Muscle, Smooth - metabolism ; permeability ; Rats ; Rats, Wistar ; thrombin ; Thrombin - pharmacology</subject><ispartof>The journal of gene medicine, 2001-01, Vol.3 (1), p.42-50</ispartof><rights>Copyright © 2001 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4519-667819930cdf2ab5761b30e79c94522d2a7750cd77a71d7e99bdfcc4260f144e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1412,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11269335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nevo, Nathalie</creatorcontrib><creatorcontrib>Chossat, Nathalie</creatorcontrib><creatorcontrib>Gosgnach, Willy</creatorcontrib><creatorcontrib>Logeart, Damien</creatorcontrib><creatorcontrib>Mercadier, Jean-Jacques</creatorcontrib><creatorcontrib>Michel, Jean-Baptiste</creatorcontrib><title>Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection</title><title>The journal of gene medicine</title><addtitle>J. Gene Med</addtitle><description>Background
Gene delivery to the myocardium using blood‐borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents.
Methods
In the present study, we modeled the endothelial barrier in vitro using a human umbilical vein endothelial cell (HUVEC) monolayer seeded on a Transwell membrane as a support and diffusion of fluorescent dextrans as a permeability index. We used α‐thrombin (100 nM) as a pharmacological agent known to increase endothelial permeability and tested the barrier function of the endothelial cell monolayer on adenovector‐mediated luciferase gene transfer to underlying isolated cardiac myocytes.
Results
A confluent HUVEC monolayer represented a considerable physical barrier to dextran diffusion; it reduced the permeability of the micropore membrane alone to fluorescein isothiocyanate (FITC)‐labeled dextrans of molecular weights 4, 70, 150 and 2000 kDa by approximately 54, 78, 88 and 98%, respectively. α‐Thrombin (100 nM) increased the permeability coefficients (PEC) by 276, 264, 562 and 4166% for the same dextrans, respectively. A confluent HUVEC monolayer represented a major impediment to adenovector‐mediated luciferase gene transfer to cardiac myocytes, largely reducing gene transfer efficiency. However thrombin induced a nine‐fold increase in myocyte infection.
Conclusion
In our model, the endothelial cell monolayer represents a major impediment to myocyte adenovector‐mediated gene transfer which can be partially improved by pharmacologically increasing endothelial permeability. The Transwell model is therefore particularly useful for testing the efficiency of pharmacological agents in modulating adenovector passage through the endothelial barrier. Copyright © 2000 John Wiley & Sons, Ltd.</description><subject>adenoviral vector</subject><subject>Adenoviridae - genetics</subject><subject>Adenovirus</subject><subject>Animals</subject><subject>Capillary Permeability - drug effects</subject><subject>cardiac myocytes</subject><subject>Cells, Cultured</subject><subject>endothelium</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - metabolism</subject><subject>fluorescein isothiocyanate</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Male</subject><subject>Muscle, Smooth - cytology</subject><subject>Muscle, Smooth - metabolism</subject><subject>permeability</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>thrombin</subject><subject>Thrombin - pharmacology</subject><issn>1099-498X</issn><issn>1521-2254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkd2O0zAQhSMEYpeFV0AWFwguUmzHieOCkEqAbmGhCwLB3ch1Jrte8lPstJC3x1GqRUJI4IvxyD5zxuMvinJGZ4xS_oSlnMWcp-IRp5Q-VmHNx_BsPl-sXsZvlu-YUM-TGZ0V66c8XtyIjq9LboacKhULlX89iu54f0Upk3mubkdHjPFMJUl6HF2sWuNQe9teEGzLrr_E2uqaGKxrskXXoN7Y2vYDsc3WdXv0JEgIVpU1FlszkK4izdCZoUeiS2y7vXWhfo-m7xyxbRUS27V3o1uVrj3eO-wn0efXrz4Vp_HZerkqFmexESlTcZbJnCmVUFNWXG9SmbFNQlEqo0TKecm1lGm4lFJLVkpUalNWxgie0YoJgclJ9HDyDY_9vkPfQ2P9OIxusdt5kJlSec7pP4Xhq4SgGQvCB38Ir7qda8MQwFSmqGQqD6LzSWRc573DCrbONtoNwCiMKGHkAiMXGFHCSHEKAAElTCghAQrFGjgsguX9Q9_dpsHyt-GBXRB8nAQ_bI3D_zf8a7vDSTCNJ1Pre_x5bardN8hkIlP48n4JxWn69nypPsCL5Bey7cZn</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Nevo, Nathalie</creator><creator>Chossat, Nathalie</creator><creator>Gosgnach, Willy</creator><creator>Logeart, Damien</creator><creator>Mercadier, Jean-Jacques</creator><creator>Michel, Jean-Baptiste</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>200101</creationdate><title>Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection</title><author>Nevo, Nathalie ; Chossat, Nathalie ; Gosgnach, Willy ; Logeart, Damien ; Mercadier, Jean-Jacques ; Michel, Jean-Baptiste</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4519-667819930cdf2ab5761b30e79c94522d2a7750cd77a71d7e99bdfcc4260f144e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>adenoviral vector</topic><topic>Adenoviridae - genetics</topic><topic>Adenovirus</topic><topic>Animals</topic><topic>Capillary Permeability - drug effects</topic><topic>cardiac myocytes</topic><topic>Cells, Cultured</topic><topic>endothelium</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - metabolism</topic><topic>fluorescein isothiocyanate</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Male</topic><topic>Muscle, Smooth - cytology</topic><topic>Muscle, Smooth - metabolism</topic><topic>permeability</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>thrombin</topic><topic>Thrombin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nevo, Nathalie</creatorcontrib><creatorcontrib>Chossat, Nathalie</creatorcontrib><creatorcontrib>Gosgnach, Willy</creatorcontrib><creatorcontrib>Logeart, Damien</creatorcontrib><creatorcontrib>Mercadier, Jean-Jacques</creatorcontrib><creatorcontrib>Michel, Jean-Baptiste</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of gene medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nevo, Nathalie</au><au>Chossat, Nathalie</au><au>Gosgnach, Willy</au><au>Logeart, Damien</au><au>Mercadier, Jean-Jacques</au><au>Michel, Jean-Baptiste</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection</atitle><jtitle>The journal of gene medicine</jtitle><addtitle>J. Gene Med</addtitle><date>2001-01</date><risdate>2001</risdate><volume>3</volume><issue>1</issue><spage>42</spage><epage>50</epage><pages>42-50</pages><issn>1099-498X</issn><eissn>1521-2254</eissn><abstract>Background
Gene delivery to the myocardium using blood‐borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents.
Methods
In the present study, we modeled the endothelial barrier in vitro using a human umbilical vein endothelial cell (HUVEC) monolayer seeded on a Transwell membrane as a support and diffusion of fluorescent dextrans as a permeability index. We used α‐thrombin (100 nM) as a pharmacological agent known to increase endothelial permeability and tested the barrier function of the endothelial cell monolayer on adenovector‐mediated luciferase gene transfer to underlying isolated cardiac myocytes.
Results
A confluent HUVEC monolayer represented a considerable physical barrier to dextran diffusion; it reduced the permeability of the micropore membrane alone to fluorescein isothiocyanate (FITC)‐labeled dextrans of molecular weights 4, 70, 150 and 2000 kDa by approximately 54, 78, 88 and 98%, respectively. α‐Thrombin (100 nM) increased the permeability coefficients (PEC) by 276, 264, 562 and 4166% for the same dextrans, respectively. A confluent HUVEC monolayer represented a major impediment to adenovector‐mediated luciferase gene transfer to cardiac myocytes, largely reducing gene transfer efficiency. However thrombin induced a nine‐fold increase in myocyte infection.
Conclusion
In our model, the endothelial cell monolayer represents a major impediment to myocyte adenovector‐mediated gene transfer which can be partially improved by pharmacologically increasing endothelial permeability. The Transwell model is therefore particularly useful for testing the efficiency of pharmacological agents in modulating adenovector passage through the endothelial barrier. Copyright © 2000 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>11269335</pmid><doi>10.1002/1521-2254(2000)9999:9999<::AID-JGM149>3.0.CO;2-A</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-498X |
ispartof | The journal of gene medicine, 2001-01, Vol.3 (1), p.42-50 |
issn | 1099-498X 1521-2254 |
language | eng |
recordid | cdi_proquest_miscellaneous_76998820 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | adenoviral vector Adenoviridae - genetics Adenovirus Animals Capillary Permeability - drug effects cardiac myocytes Cells, Cultured endothelium Endothelium, Vascular - cytology Endothelium, Vascular - metabolism fluorescein isothiocyanate Gene therapy Gene Transfer Techniques Genetic Vectors Humans Male Muscle, Smooth - cytology Muscle, Smooth - metabolism permeability Rats Rats, Wistar thrombin Thrombin - pharmacology |
title | Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20endothelial%20cell%20permeability%20improves%20the%20efficiency%20of%20myocyte%20adenoviral%20vector%20infection&rft.jtitle=The%20journal%20of%20gene%20medicine&rft.au=Nevo,%20Nathalie&rft.date=2001-01&rft.volume=3&rft.issue=1&rft.spage=42&rft.epage=50&rft.pages=42-50&rft.issn=1099-498X&rft.eissn=1521-2254&rft_id=info:doi/10.1002/1521-2254(2000)9999:9999%3C::AID-JGM149%3E3.0.CO;2-A&rft_dat=%3Cproquest_cross%3E789703791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196907198&rft_id=info:pmid/11269335&rfr_iscdi=true |