Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection

Background Gene delivery to the myocardium using blood‐borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents. Methods In the present study, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of gene medicine 2001-01, Vol.3 (1), p.42-50
Hauptverfasser: Nevo, Nathalie, Chossat, Nathalie, Gosgnach, Willy, Logeart, Damien, Mercadier, Jean-Jacques, Michel, Jean-Baptiste
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 42
container_title The journal of gene medicine
container_volume 3
creator Nevo, Nathalie
Chossat, Nathalie
Gosgnach, Willy
Logeart, Damien
Mercadier, Jean-Jacques
Michel, Jean-Baptiste
description Background Gene delivery to the myocardium using blood‐borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents. Methods In the present study, we modeled the endothelial barrier in vitro using a human umbilical vein endothelial cell (HUVEC) monolayer seeded on a Transwell membrane as a support and diffusion of fluorescent dextrans as a permeability index. We used α‐thrombin (100 nM) as a pharmacological agent known to increase endothelial permeability and tested the barrier function of the endothelial cell monolayer on adenovector‐mediated luciferase gene transfer to underlying isolated cardiac myocytes. Results A confluent HUVEC monolayer represented a considerable physical barrier to dextran diffusion; it reduced the permeability of the micropore membrane alone to fluorescein isothiocyanate (FITC)‐labeled dextrans of molecular weights 4, 70, 150 and 2000 kDa by approximately 54, 78, 88 and 98%, respectively. α‐Thrombin (100 nM) increased the permeability coefficients (PEC) by 276, 264, 562 and 4166% for the same dextrans, respectively. A confluent HUVEC monolayer represented a major impediment to adenovector‐mediated luciferase gene transfer to cardiac myocytes, largely reducing gene transfer efficiency. However thrombin induced a nine‐fold increase in myocyte infection. Conclusion In our model, the endothelial cell monolayer represents a major impediment to myocyte adenovector‐mediated gene transfer which can be partially improved by pharmacologically increasing endothelial permeability. The Transwell model is therefore particularly useful for testing the efficiency of pharmacological agents in modulating adenovector passage through the endothelial barrier. Copyright © 2000 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/1521-2254(2000)9999:9999<::AID-JGM149>3.0.CO;2-A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76998820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>789703791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4519-667819930cdf2ab5761b30e79c94522d2a7750cd77a71d7e99bdfcc4260f144e3</originalsourceid><addsrcrecordid>eNqNkd2O0zAQhSMEYpeFV0AWFwguUmzHieOCkEqAbmGhCwLB3ch1Jrte8lPstJC3x1GqRUJI4IvxyD5zxuMvinJGZ4xS_oSlnMWcp-IRp5Q-VmHNx_BsPl-sXsZvlu-YUM-TGZ0V66c8XtyIjq9LboacKhULlX89iu54f0Upk3mubkdHjPFMJUl6HF2sWuNQe9teEGzLrr_E2uqaGKxrskXXoN7Y2vYDsc3WdXv0JEgIVpU1FlszkK4izdCZoUeiS2y7vXWhfo-m7xyxbRUS27V3o1uVrj3eO-wn0efXrz4Vp_HZerkqFmexESlTcZbJnCmVUFNWXG9SmbFNQlEqo0TKecm1lGm4lFJLVkpUalNWxgie0YoJgclJ9HDyDY_9vkPfQ2P9OIxusdt5kJlSec7pP4Xhq4SgGQvCB38Ir7qda8MQwFSmqGQqD6LzSWRc573DCrbONtoNwCiMKGHkAiMXGFHCSHEKAAElTCghAQrFGjgsguX9Q9_dpsHyt-GBXRB8nAQ_bI3D_zf8a7vDSTCNJ1Pre_x5bardN8hkIlP48n4JxWn69nypPsCL5Bey7cZn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196907198</pqid></control><display><type>article</type><title>Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nevo, Nathalie ; Chossat, Nathalie ; Gosgnach, Willy ; Logeart, Damien ; Mercadier, Jean-Jacques ; Michel, Jean-Baptiste</creator><creatorcontrib>Nevo, Nathalie ; Chossat, Nathalie ; Gosgnach, Willy ; Logeart, Damien ; Mercadier, Jean-Jacques ; Michel, Jean-Baptiste</creatorcontrib><description>Background Gene delivery to the myocardium using blood‐borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents. Methods In the present study, we modeled the endothelial barrier in vitro using a human umbilical vein endothelial cell (HUVEC) monolayer seeded on a Transwell membrane as a support and diffusion of fluorescent dextrans as a permeability index. We used α‐thrombin (100 nM) as a pharmacological agent known to increase endothelial permeability and tested the barrier function of the endothelial cell monolayer on adenovector‐mediated luciferase gene transfer to underlying isolated cardiac myocytes. Results A confluent HUVEC monolayer represented a considerable physical barrier to dextran diffusion; it reduced the permeability of the micropore membrane alone to fluorescein isothiocyanate (FITC)‐labeled dextrans of molecular weights 4, 70, 150 and 2000 kDa by approximately 54, 78, 88 and 98%, respectively. α‐Thrombin (100 nM) increased the permeability coefficients (PEC) by 276, 264, 562 and 4166% for the same dextrans, respectively. A confluent HUVEC monolayer represented a major impediment to adenovector‐mediated luciferase gene transfer to cardiac myocytes, largely reducing gene transfer efficiency. However thrombin induced a nine‐fold increase in myocyte infection. Conclusion In our model, the endothelial cell monolayer represents a major impediment to myocyte adenovector‐mediated gene transfer which can be partially improved by pharmacologically increasing endothelial permeability. The Transwell model is therefore particularly useful for testing the efficiency of pharmacological agents in modulating adenovector passage through the endothelial barrier. Copyright © 2000 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1099-498X</identifier><identifier>EISSN: 1521-2254</identifier><identifier>DOI: 10.1002/1521-2254(2000)9999:9999&lt;::AID-JGM149&gt;3.0.CO;2-A</identifier><identifier>PMID: 11269335</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>adenoviral vector ; Adenoviridae - genetics ; Adenovirus ; Animals ; Capillary Permeability - drug effects ; cardiac myocytes ; Cells, Cultured ; endothelium ; Endothelium, Vascular - cytology ; Endothelium, Vascular - metabolism ; fluorescein isothiocyanate ; Gene therapy ; Gene Transfer Techniques ; Genetic Vectors ; Humans ; Male ; Muscle, Smooth - cytology ; Muscle, Smooth - metabolism ; permeability ; Rats ; Rats, Wistar ; thrombin ; Thrombin - pharmacology</subject><ispartof>The journal of gene medicine, 2001-01, Vol.3 (1), p.42-50</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4519-667819930cdf2ab5761b30e79c94522d2a7750cd77a71d7e99bdfcc4260f144e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1412,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11269335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nevo, Nathalie</creatorcontrib><creatorcontrib>Chossat, Nathalie</creatorcontrib><creatorcontrib>Gosgnach, Willy</creatorcontrib><creatorcontrib>Logeart, Damien</creatorcontrib><creatorcontrib>Mercadier, Jean-Jacques</creatorcontrib><creatorcontrib>Michel, Jean-Baptiste</creatorcontrib><title>Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection</title><title>The journal of gene medicine</title><addtitle>J. Gene Med</addtitle><description>Background Gene delivery to the myocardium using blood‐borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents. Methods In the present study, we modeled the endothelial barrier in vitro using a human umbilical vein endothelial cell (HUVEC) monolayer seeded on a Transwell membrane as a support and diffusion of fluorescent dextrans as a permeability index. We used α‐thrombin (100 nM) as a pharmacological agent known to increase endothelial permeability and tested the barrier function of the endothelial cell monolayer on adenovector‐mediated luciferase gene transfer to underlying isolated cardiac myocytes. Results A confluent HUVEC monolayer represented a considerable physical barrier to dextran diffusion; it reduced the permeability of the micropore membrane alone to fluorescein isothiocyanate (FITC)‐labeled dextrans of molecular weights 4, 70, 150 and 2000 kDa by approximately 54, 78, 88 and 98%, respectively. α‐Thrombin (100 nM) increased the permeability coefficients (PEC) by 276, 264, 562 and 4166% for the same dextrans, respectively. A confluent HUVEC monolayer represented a major impediment to adenovector‐mediated luciferase gene transfer to cardiac myocytes, largely reducing gene transfer efficiency. However thrombin induced a nine‐fold increase in myocyte infection. Conclusion In our model, the endothelial cell monolayer represents a major impediment to myocyte adenovector‐mediated gene transfer which can be partially improved by pharmacologically increasing endothelial permeability. The Transwell model is therefore particularly useful for testing the efficiency of pharmacological agents in modulating adenovector passage through the endothelial barrier. Copyright © 2000 John Wiley &amp; Sons, Ltd.</description><subject>adenoviral vector</subject><subject>Adenoviridae - genetics</subject><subject>Adenovirus</subject><subject>Animals</subject><subject>Capillary Permeability - drug effects</subject><subject>cardiac myocytes</subject><subject>Cells, Cultured</subject><subject>endothelium</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - metabolism</subject><subject>fluorescein isothiocyanate</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Male</subject><subject>Muscle, Smooth - cytology</subject><subject>Muscle, Smooth - metabolism</subject><subject>permeability</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>thrombin</subject><subject>Thrombin - pharmacology</subject><issn>1099-498X</issn><issn>1521-2254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkd2O0zAQhSMEYpeFV0AWFwguUmzHieOCkEqAbmGhCwLB3ch1Jrte8lPstJC3x1GqRUJI4IvxyD5zxuMvinJGZ4xS_oSlnMWcp-IRp5Q-VmHNx_BsPl-sXsZvlu-YUM-TGZ0V66c8XtyIjq9LboacKhULlX89iu54f0Upk3mubkdHjPFMJUl6HF2sWuNQe9teEGzLrr_E2uqaGKxrskXXoN7Y2vYDsc3WdXv0JEgIVpU1FlszkK4izdCZoUeiS2y7vXWhfo-m7xyxbRUS27V3o1uVrj3eO-wn0efXrz4Vp_HZerkqFmexESlTcZbJnCmVUFNWXG9SmbFNQlEqo0TKecm1lGm4lFJLVkpUalNWxgie0YoJgclJ9HDyDY_9vkPfQ2P9OIxusdt5kJlSec7pP4Xhq4SgGQvCB38Ir7qda8MQwFSmqGQqD6LzSWRc573DCrbONtoNwCiMKGHkAiMXGFHCSHEKAAElTCghAQrFGjgsguX9Q9_dpsHyt-GBXRB8nAQ_bI3D_zf8a7vDSTCNJ1Pre_x5bardN8hkIlP48n4JxWn69nypPsCL5Bey7cZn</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Nevo, Nathalie</creator><creator>Chossat, Nathalie</creator><creator>Gosgnach, Willy</creator><creator>Logeart, Damien</creator><creator>Mercadier, Jean-Jacques</creator><creator>Michel, Jean-Baptiste</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>200101</creationdate><title>Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection</title><author>Nevo, Nathalie ; Chossat, Nathalie ; Gosgnach, Willy ; Logeart, Damien ; Mercadier, Jean-Jacques ; Michel, Jean-Baptiste</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4519-667819930cdf2ab5761b30e79c94522d2a7750cd77a71d7e99bdfcc4260f144e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>adenoviral vector</topic><topic>Adenoviridae - genetics</topic><topic>Adenovirus</topic><topic>Animals</topic><topic>Capillary Permeability - drug effects</topic><topic>cardiac myocytes</topic><topic>Cells, Cultured</topic><topic>endothelium</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - metabolism</topic><topic>fluorescein isothiocyanate</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Male</topic><topic>Muscle, Smooth - cytology</topic><topic>Muscle, Smooth - metabolism</topic><topic>permeability</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>thrombin</topic><topic>Thrombin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nevo, Nathalie</creatorcontrib><creatorcontrib>Chossat, Nathalie</creatorcontrib><creatorcontrib>Gosgnach, Willy</creatorcontrib><creatorcontrib>Logeart, Damien</creatorcontrib><creatorcontrib>Mercadier, Jean-Jacques</creatorcontrib><creatorcontrib>Michel, Jean-Baptiste</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of gene medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nevo, Nathalie</au><au>Chossat, Nathalie</au><au>Gosgnach, Willy</au><au>Logeart, Damien</au><au>Mercadier, Jean-Jacques</au><au>Michel, Jean-Baptiste</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection</atitle><jtitle>The journal of gene medicine</jtitle><addtitle>J. Gene Med</addtitle><date>2001-01</date><risdate>2001</risdate><volume>3</volume><issue>1</issue><spage>42</spage><epage>50</epage><pages>42-50</pages><issn>1099-498X</issn><eissn>1521-2254</eissn><abstract>Background Gene delivery to the myocardium using blood‐borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents. Methods In the present study, we modeled the endothelial barrier in vitro using a human umbilical vein endothelial cell (HUVEC) monolayer seeded on a Transwell membrane as a support and diffusion of fluorescent dextrans as a permeability index. We used α‐thrombin (100 nM) as a pharmacological agent known to increase endothelial permeability and tested the barrier function of the endothelial cell monolayer on adenovector‐mediated luciferase gene transfer to underlying isolated cardiac myocytes. Results A confluent HUVEC monolayer represented a considerable physical barrier to dextran diffusion; it reduced the permeability of the micropore membrane alone to fluorescein isothiocyanate (FITC)‐labeled dextrans of molecular weights 4, 70, 150 and 2000 kDa by approximately 54, 78, 88 and 98%, respectively. α‐Thrombin (100 nM) increased the permeability coefficients (PEC) by 276, 264, 562 and 4166% for the same dextrans, respectively. A confluent HUVEC monolayer represented a major impediment to adenovector‐mediated luciferase gene transfer to cardiac myocytes, largely reducing gene transfer efficiency. However thrombin induced a nine‐fold increase in myocyte infection. Conclusion In our model, the endothelial cell monolayer represents a major impediment to myocyte adenovector‐mediated gene transfer which can be partially improved by pharmacologically increasing endothelial permeability. The Transwell model is therefore particularly useful for testing the efficiency of pharmacological agents in modulating adenovector passage through the endothelial barrier. Copyright © 2000 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>11269335</pmid><doi>10.1002/1521-2254(2000)9999:9999&lt;::AID-JGM149&gt;3.0.CO;2-A</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1099-498X
ispartof The journal of gene medicine, 2001-01, Vol.3 (1), p.42-50
issn 1099-498X
1521-2254
language eng
recordid cdi_proquest_miscellaneous_76998820
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects adenoviral vector
Adenoviridae - genetics
Adenovirus
Animals
Capillary Permeability - drug effects
cardiac myocytes
Cells, Cultured
endothelium
Endothelium, Vascular - cytology
Endothelium, Vascular - metabolism
fluorescein isothiocyanate
Gene therapy
Gene Transfer Techniques
Genetic Vectors
Humans
Male
Muscle, Smooth - cytology
Muscle, Smooth - metabolism
permeability
Rats
Rats, Wistar
thrombin
Thrombin - pharmacology
title Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20endothelial%20cell%20permeability%20improves%20the%20efficiency%20of%20myocyte%20adenoviral%20vector%20infection&rft.jtitle=The%20journal%20of%20gene%20medicine&rft.au=Nevo,%20Nathalie&rft.date=2001-01&rft.volume=3&rft.issue=1&rft.spage=42&rft.epage=50&rft.pages=42-50&rft.issn=1099-498X&rft.eissn=1521-2254&rft_id=info:doi/10.1002/1521-2254(2000)9999:9999%3C::AID-JGM149%3E3.0.CO;2-A&rft_dat=%3Cproquest_cross%3E789703791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196907198&rft_id=info:pmid/11269335&rfr_iscdi=true