Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)

Octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lipids 2001-02, Vol.36 (2), p.145-153
Hauptverfasser: Ghioni, C., Porter, A. E. A., Sadler, I. H., Tocher, D. R., Sargent, J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 2
container_start_page 145
container_title Lipids
container_volume 36
creator Ghioni, C.
Porter, A. E. A.
Sadler, I. H.
Tocher, D. R.
Sargent, J. R.
description Octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U‐14C] 18∶5n−3 methyl ester or [U‐14C]18∶4n−3 (octadecatetraenoic acid; all‐cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3−, and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all‐cis δ6,9,12,15–18∶5 (2‐trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all‐cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all‐cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all‐cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2‐trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2‐trans 18∶5n−3 intermediate generated by a Δ3, Δ2‐enoyl‐CoA‐iso‐merase acting on 18∶5n−3. Thus, 2‐trans 18∶5n−3 is implicated as a common intermediate in the β‐oxidation of both 18∶5n−3 and 18∶4n−3.
doi_str_mv 10.1007/s11745-001-0701-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76992941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76992941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-dfe358950d3ad3043ce832a99b58aaace1260b46b48d40adf48b010223e206a03</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMoTs_oA7iR4EKmoUpv_qqSpbQ6DjToQtchlUphhuqqtpIaGVezdDngqww-xjzD0E9iimoUFHVzww3fOVzOQegRgWcEoHweCCm5yAFIDuU07qAFEULmikF5Fy0AKM85BXKADkM4SyvhStxHB4TQQhVKLNDtamzjOLgaNz58xNa1bcAbF03Vt_6Lw72NpnbWbF0Xjet6b7GxvsbHpm13l1fWB3xzzbIiUxmhGRG7y29E7r5-F0sc-5_q6OLwV_UfWr7E595gHwOmiUrSLmDfRTdsXO2TGT6e_26uaYb_aSWWD9C9xrTBPdy_R-jD61fvV2_y9duT09WLdW55iiyvG8eEVAJqZmoGnFknGTVKVUIaY6xLiUHFi4rLmoOpGy4rIEApcxQKA-wIPZ19t0P_aXQh6o0PU5ymc_0YdFkoRRUnCXzyG3jWj0OXbtNSSpIYyRNEZsgOfQiDa_R28BszXGgCeupez93r1L2eutfTBY_3xmOVgvql2JedgHIGPvvWXfzfUa9P370EwgX7ATp0wms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888129484</pqid></control><display><type>article</type><title>Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><source>Wiley Online Library All Journals</source><creator>Ghioni, C. ; Porter, A. E. A. ; Sadler, I. H. ; Tocher, D. R. ; Sargent, J. R.</creator><creatorcontrib>Ghioni, C. ; Porter, A. E. A. ; Sadler, I. H. ; Tocher, D. R. ; Sargent, J. R.</creatorcontrib><description>Octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U‐14C] 18∶5n−3 methyl ester or [U‐14C]18∶4n−3 (octadecatetraenoic acid; all‐cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3−, and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all‐cis δ6,9,12,15–18∶5 (2‐trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all‐cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all‐cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all‐cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2‐trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2‐trans 18∶5n−3 intermediate generated by a Δ3, Δ2‐enoyl‐CoA‐iso‐merase acting on 18∶5n−3. Thus, 2‐trans 18∶5n−3 is implicated as a common intermediate in the β‐oxidation of both 18∶5n−3 and 18∶4n−3.</description><identifier>ISSN: 0024-4201</identifier><identifier>EISSN: 1558-9307</identifier><identifier>DOI: 10.1007/s11745-001-0701-0</identifier><identifier>PMID: 11269695</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer‐Verlag</publisher><subject>Algae ; Animals ; Aquaculture ; Cells, Cultured ; Fatty Acid Desaturases - metabolism ; Fatty acids ; Fatty Acids, Unsaturated - metabolism ; Fish ; Fishes - metabolism ; Flatfishes ; Salmo salar ; Salmon ; Sea Bream ; Trophic levels</subject><ispartof>Lipids, 2001-02, Vol.36 (2), p.145-153</ispartof><rights>2001 American Oil Chemists' Society (AOCS)</rights><rights>AOCS Press 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-dfe358950d3ad3043ce832a99b58aaace1260b46b48d40adf48b010223e206a03</citedby><cites>FETCH-LOGICAL-c4155-dfe358950d3ad3043ce832a99b58aaace1260b46b48d40adf48b010223e206a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1007%2Fs11745-001-0701-0$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1007%2Fs11745-001-0701-0$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11269695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghioni, C.</creatorcontrib><creatorcontrib>Porter, A. E. A.</creatorcontrib><creatorcontrib>Sadler, I. H.</creatorcontrib><creatorcontrib>Tocher, D. R.</creatorcontrib><creatorcontrib>Sargent, J. R.</creatorcontrib><title>Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)</title><title>Lipids</title><addtitle>Lipids</addtitle><description>Octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U‐14C] 18∶5n−3 methyl ester or [U‐14C]18∶4n−3 (octadecatetraenoic acid; all‐cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3−, and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all‐cis δ6,9,12,15–18∶5 (2‐trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all‐cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all‐cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all‐cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2‐trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2‐trans 18∶5n−3 intermediate generated by a Δ3, Δ2‐enoyl‐CoA‐iso‐merase acting on 18∶5n−3. Thus, 2‐trans 18∶5n−3 is implicated as a common intermediate in the β‐oxidation of both 18∶5n−3 and 18∶4n−3.</description><subject>Algae</subject><subject>Animals</subject><subject>Aquaculture</subject><subject>Cells, Cultured</subject><subject>Fatty Acid Desaturases - metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids, Unsaturated - metabolism</subject><subject>Fish</subject><subject>Fishes - metabolism</subject><subject>Flatfishes</subject><subject>Salmo salar</subject><subject>Salmon</subject><subject>Sea Bream</subject><subject>Trophic levels</subject><issn>0024-4201</issn><issn>1558-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc2KFDEUhYMoTs_oA7iR4EKmoUpv_qqSpbQ6DjToQtchlUphhuqqtpIaGVezdDngqww-xjzD0E9iimoUFHVzww3fOVzOQegRgWcEoHweCCm5yAFIDuU07qAFEULmikF5Fy0AKM85BXKADkM4SyvhStxHB4TQQhVKLNDtamzjOLgaNz58xNa1bcAbF03Vt_6Lw72NpnbWbF0Xjet6b7GxvsbHpm13l1fWB3xzzbIiUxmhGRG7y29E7r5-F0sc-5_q6OLwV_UfWr7E595gHwOmiUrSLmDfRTdsXO2TGT6e_26uaYb_aSWWD9C9xrTBPdy_R-jD61fvV2_y9duT09WLdW55iiyvG8eEVAJqZmoGnFknGTVKVUIaY6xLiUHFi4rLmoOpGy4rIEApcxQKA-wIPZ19t0P_aXQh6o0PU5ymc_0YdFkoRRUnCXzyG3jWj0OXbtNSSpIYyRNEZsgOfQiDa_R28BszXGgCeupez93r1L2eutfTBY_3xmOVgvql2JedgHIGPvvWXfzfUa9P370EwgX7ATp0wms</recordid><startdate>200102</startdate><enddate>200102</enddate><creator>Ghioni, C.</creator><creator>Porter, A. E. A.</creator><creator>Sadler, I. H.</creator><creator>Tocher, D. R.</creator><creator>Sargent, J. R.</creator><general>Springer‐Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>200102</creationdate><title>Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)</title><author>Ghioni, C. ; Porter, A. E. A. ; Sadler, I. H. ; Tocher, D. R. ; Sargent, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-dfe358950d3ad3043ce832a99b58aaace1260b46b48d40adf48b010223e206a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algae</topic><topic>Animals</topic><topic>Aquaculture</topic><topic>Cells, Cultured</topic><topic>Fatty Acid Desaturases - metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids, Unsaturated - metabolism</topic><topic>Fish</topic><topic>Fishes - metabolism</topic><topic>Flatfishes</topic><topic>Salmo salar</topic><topic>Salmon</topic><topic>Sea Bream</topic><topic>Trophic levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghioni, C.</creatorcontrib><creatorcontrib>Porter, A. E. A.</creatorcontrib><creatorcontrib>Sadler, I. H.</creatorcontrib><creatorcontrib>Tocher, D. R.</creatorcontrib><creatorcontrib>Sargent, J. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Lipids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghioni, C.</au><au>Porter, A. E. A.</au><au>Sadler, I. H.</au><au>Tocher, D. R.</au><au>Sargent, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)</atitle><jtitle>Lipids</jtitle><addtitle>Lipids</addtitle><date>2001-02</date><risdate>2001</risdate><volume>36</volume><issue>2</issue><spage>145</spage><epage>153</epage><pages>145-153</pages><issn>0024-4201</issn><eissn>1558-9307</eissn><abstract>Octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U‐14C] 18∶5n−3 methyl ester or [U‐14C]18∶4n−3 (octadecatetraenoic acid; all‐cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3−, and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all‐cis δ6,9,12,15–18∶5 (2‐trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all‐cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all‐cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all‐cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2‐trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2‐trans 18∶5n−3 intermediate generated by a Δ3, Δ2‐enoyl‐CoA‐iso‐merase acting on 18∶5n−3. Thus, 2‐trans 18∶5n−3 is implicated as a common intermediate in the β‐oxidation of both 18∶5n−3 and 18∶4n−3.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer‐Verlag</pub><pmid>11269695</pmid><doi>10.1007/s11745-001-0701-0</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-4201
ispartof Lipids, 2001-02, Vol.36 (2), p.145-153
issn 0024-4201
1558-9307
language eng
recordid cdi_proquest_miscellaneous_76992941
source MEDLINE; Springer Online Journals Complete; Wiley Online Library All Journals
subjects Algae
Animals
Aquaculture
Cells, Cultured
Fatty Acid Desaturases - metabolism
Fatty acids
Fatty Acids, Unsaturated - metabolism
Fish
Fishes - metabolism
Flatfishes
Salmo salar
Salmon
Sea Bream
Trophic levels
title Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cultured%20fish%20cells%20metabolize%20octadecapentaenoic%20acid%20(all%E2%80%90cis%20%CE%B43,6,9,12,15%E2%80%9318%E2%88%B65)%20to%20octadecatetraenoic%20acid%20(all%E2%80%90cis%20%CE%B46,9,12,15%E2%80%9318%E2%88%B64)%20via%20its%202%E2%80%90trans%20intermediate%20(trans%20%CE%B42,%20all%E2%80%90cis%20%CE%B46,9,12,15%E2%80%9318%E2%88%B65)&rft.jtitle=Lipids&rft.au=Ghioni,%20C.&rft.date=2001-02&rft.volume=36&rft.issue=2&rft.spage=145&rft.epage=153&rft.pages=145-153&rft.issn=0024-4201&rft.eissn=1558-9307&rft_id=info:doi/10.1007/s11745-001-0701-0&rft_dat=%3Cproquest_cross%3E76992941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=888129484&rft_id=info:pmid/11269695&rfr_iscdi=true