Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)
Octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolis...
Gespeichert in:
Veröffentlicht in: | Lipids 2001-02, Vol.36 (2), p.145-153 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 2 |
container_start_page | 145 |
container_title | Lipids |
container_volume | 36 |
creator | Ghioni, C. Porter, A. E. A. Sadler, I. H. Tocher, D. R. Sargent, J. R. |
description | Octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U‐14C] 18∶5n−3 methyl ester or [U‐14C]18∶4n−3 (octadecatetraenoic acid; all‐cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3−, and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all‐cis δ6,9,12,15–18∶5 (2‐trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all‐cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all‐cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all‐cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2‐trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2‐trans 18∶5n−3 intermediate generated by a Δ3, Δ2‐enoyl‐CoA‐iso‐merase acting on 18∶5n−3. Thus, 2‐trans 18∶5n−3 is implicated as a common intermediate in the β‐oxidation of both 18∶5n−3 and 18∶4n−3. |
doi_str_mv | 10.1007/s11745-001-0701-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76992941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76992941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-dfe358950d3ad3043ce832a99b58aaace1260b46b48d40adf48b010223e206a03</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMoTs_oA7iR4EKmoUpv_qqSpbQ6DjToQtchlUphhuqqtpIaGVezdDngqww-xjzD0E9iimoUFHVzww3fOVzOQegRgWcEoHweCCm5yAFIDuU07qAFEULmikF5Fy0AKM85BXKADkM4SyvhStxHB4TQQhVKLNDtamzjOLgaNz58xNa1bcAbF03Vt_6Lw72NpnbWbF0Xjet6b7GxvsbHpm13l1fWB3xzzbIiUxmhGRG7y29E7r5-F0sc-5_q6OLwV_UfWr7E595gHwOmiUrSLmDfRTdsXO2TGT6e_26uaYb_aSWWD9C9xrTBPdy_R-jD61fvV2_y9duT09WLdW55iiyvG8eEVAJqZmoGnFknGTVKVUIaY6xLiUHFi4rLmoOpGy4rIEApcxQKA-wIPZ19t0P_aXQh6o0PU5ymc_0YdFkoRRUnCXzyG3jWj0OXbtNSSpIYyRNEZsgOfQiDa_R28BszXGgCeupez93r1L2eutfTBY_3xmOVgvql2JedgHIGPvvWXfzfUa9P370EwgX7ATp0wms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888129484</pqid></control><display><type>article</type><title>Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><source>Wiley Online Library All Journals</source><creator>Ghioni, C. ; Porter, A. E. A. ; Sadler, I. H. ; Tocher, D. R. ; Sargent, J. R.</creator><creatorcontrib>Ghioni, C. ; Porter, A. E. A. ; Sadler, I. H. ; Tocher, D. R. ; Sargent, J. R.</creatorcontrib><description>Octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U‐14C] 18∶5n−3 methyl ester or [U‐14C]18∶4n−3 (octadecatetraenoic acid; all‐cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3−, and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all‐cis δ6,9,12,15–18∶5 (2‐trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all‐cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all‐cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all‐cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2‐trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2‐trans 18∶5n−3 intermediate generated by a Δ3, Δ2‐enoyl‐CoA‐iso‐merase acting on 18∶5n−3. Thus, 2‐trans 18∶5n−3 is implicated as a common intermediate in the β‐oxidation of both 18∶5n−3 and 18∶4n−3.</description><identifier>ISSN: 0024-4201</identifier><identifier>EISSN: 1558-9307</identifier><identifier>DOI: 10.1007/s11745-001-0701-0</identifier><identifier>PMID: 11269695</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer‐Verlag</publisher><subject>Algae ; Animals ; Aquaculture ; Cells, Cultured ; Fatty Acid Desaturases - metabolism ; Fatty acids ; Fatty Acids, Unsaturated - metabolism ; Fish ; Fishes - metabolism ; Flatfishes ; Salmo salar ; Salmon ; Sea Bream ; Trophic levels</subject><ispartof>Lipids, 2001-02, Vol.36 (2), p.145-153</ispartof><rights>2001 American Oil Chemists' Society (AOCS)</rights><rights>AOCS Press 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-dfe358950d3ad3043ce832a99b58aaace1260b46b48d40adf48b010223e206a03</citedby><cites>FETCH-LOGICAL-c4155-dfe358950d3ad3043ce832a99b58aaace1260b46b48d40adf48b010223e206a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1007%2Fs11745-001-0701-0$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1007%2Fs11745-001-0701-0$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11269695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghioni, C.</creatorcontrib><creatorcontrib>Porter, A. E. A.</creatorcontrib><creatorcontrib>Sadler, I. H.</creatorcontrib><creatorcontrib>Tocher, D. R.</creatorcontrib><creatorcontrib>Sargent, J. R.</creatorcontrib><title>Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)</title><title>Lipids</title><addtitle>Lipids</addtitle><description>Octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U‐14C] 18∶5n−3 methyl ester or [U‐14C]18∶4n−3 (octadecatetraenoic acid; all‐cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3−, and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all‐cis δ6,9,12,15–18∶5 (2‐trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all‐cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all‐cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all‐cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2‐trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2‐trans 18∶5n−3 intermediate generated by a Δ3, Δ2‐enoyl‐CoA‐iso‐merase acting on 18∶5n−3. Thus, 2‐trans 18∶5n−3 is implicated as a common intermediate in the β‐oxidation of both 18∶5n−3 and 18∶4n−3.</description><subject>Algae</subject><subject>Animals</subject><subject>Aquaculture</subject><subject>Cells, Cultured</subject><subject>Fatty Acid Desaturases - metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids, Unsaturated - metabolism</subject><subject>Fish</subject><subject>Fishes - metabolism</subject><subject>Flatfishes</subject><subject>Salmo salar</subject><subject>Salmon</subject><subject>Sea Bream</subject><subject>Trophic levels</subject><issn>0024-4201</issn><issn>1558-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc2KFDEUhYMoTs_oA7iR4EKmoUpv_qqSpbQ6DjToQtchlUphhuqqtpIaGVezdDngqww-xjzD0E9iimoUFHVzww3fOVzOQegRgWcEoHweCCm5yAFIDuU07qAFEULmikF5Fy0AKM85BXKADkM4SyvhStxHB4TQQhVKLNDtamzjOLgaNz58xNa1bcAbF03Vt_6Lw72NpnbWbF0Xjet6b7GxvsbHpm13l1fWB3xzzbIiUxmhGRG7y29E7r5-F0sc-5_q6OLwV_UfWr7E595gHwOmiUrSLmDfRTdsXO2TGT6e_26uaYb_aSWWD9C9xrTBPdy_R-jD61fvV2_y9duT09WLdW55iiyvG8eEVAJqZmoGnFknGTVKVUIaY6xLiUHFi4rLmoOpGy4rIEApcxQKA-wIPZ19t0P_aXQh6o0PU5ymc_0YdFkoRRUnCXzyG3jWj0OXbtNSSpIYyRNEZsgOfQiDa_R28BszXGgCeupez93r1L2eutfTBY_3xmOVgvql2JedgHIGPvvWXfzfUa9P370EwgX7ATp0wms</recordid><startdate>200102</startdate><enddate>200102</enddate><creator>Ghioni, C.</creator><creator>Porter, A. E. A.</creator><creator>Sadler, I. H.</creator><creator>Tocher, D. R.</creator><creator>Sargent, J. R.</creator><general>Springer‐Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>200102</creationdate><title>Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)</title><author>Ghioni, C. ; Porter, A. E. A. ; Sadler, I. H. ; Tocher, D. R. ; Sargent, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-dfe358950d3ad3043ce832a99b58aaace1260b46b48d40adf48b010223e206a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algae</topic><topic>Animals</topic><topic>Aquaculture</topic><topic>Cells, Cultured</topic><topic>Fatty Acid Desaturases - metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids, Unsaturated - metabolism</topic><topic>Fish</topic><topic>Fishes - metabolism</topic><topic>Flatfishes</topic><topic>Salmo salar</topic><topic>Salmon</topic><topic>Sea Bream</topic><topic>Trophic levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghioni, C.</creatorcontrib><creatorcontrib>Porter, A. E. A.</creatorcontrib><creatorcontrib>Sadler, I. H.</creatorcontrib><creatorcontrib>Tocher, D. R.</creatorcontrib><creatorcontrib>Sargent, J. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Lipids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghioni, C.</au><au>Porter, A. E. A.</au><au>Sadler, I. H.</au><au>Tocher, D. R.</au><au>Sargent, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5)</atitle><jtitle>Lipids</jtitle><addtitle>Lipids</addtitle><date>2001-02</date><risdate>2001</risdate><volume>36</volume><issue>2</issue><spage>145</spage><epage>153</epage><pages>145-153</pages><issn>0024-4201</issn><eissn>1558-9307</eissn><abstract>Octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U‐14C] 18∶5n−3 methyl ester or [U‐14C]18∶4n−3 (octadecatetraenoic acid; all‐cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3−, and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all‐cis δ6,9,12,15–18∶5 (2‐trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all‐cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all‐cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all‐cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2‐trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2‐trans 18∶5n−3 intermediate generated by a Δ3, Δ2‐enoyl‐CoA‐iso‐merase acting on 18∶5n−3. Thus, 2‐trans 18∶5n−3 is implicated as a common intermediate in the β‐oxidation of both 18∶5n−3 and 18∶4n−3.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer‐Verlag</pub><pmid>11269695</pmid><doi>10.1007/s11745-001-0701-0</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-4201 |
ispartof | Lipids, 2001-02, Vol.36 (2), p.145-153 |
issn | 0024-4201 1558-9307 |
language | eng |
recordid | cdi_proquest_miscellaneous_76992941 |
source | MEDLINE; Springer Online Journals Complete; Wiley Online Library All Journals |
subjects | Algae Animals Aquaculture Cells, Cultured Fatty Acid Desaturases - metabolism Fatty acids Fatty Acids, Unsaturated - metabolism Fish Fishes - metabolism Flatfishes Salmo salar Salmon Sea Bream Trophic levels |
title | Cultured fish cells metabolize octadecapentaenoic acid (all‐cis δ3,6,9,12,15–18∶5) to octadecatetraenoic acid (all‐cis δ6,9,12,15–18∶4) via its 2‐trans intermediate (trans δ2, all‐cis δ6,9,12,15–18∶5) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cultured%20fish%20cells%20metabolize%20octadecapentaenoic%20acid%20(all%E2%80%90cis%20%CE%B43,6,9,12,15%E2%80%9318%E2%88%B65)%20to%20octadecatetraenoic%20acid%20(all%E2%80%90cis%20%CE%B46,9,12,15%E2%80%9318%E2%88%B64)%20via%20its%202%E2%80%90trans%20intermediate%20(trans%20%CE%B42,%20all%E2%80%90cis%20%CE%B46,9,12,15%E2%80%9318%E2%88%B65)&rft.jtitle=Lipids&rft.au=Ghioni,%20C.&rft.date=2001-02&rft.volume=36&rft.issue=2&rft.spage=145&rft.epage=153&rft.pages=145-153&rft.issn=0024-4201&rft.eissn=1558-9307&rft_id=info:doi/10.1007/s11745-001-0701-0&rft_dat=%3Cproquest_cross%3E76992941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=888129484&rft_id=info:pmid/11269695&rfr_iscdi=true |