No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH

Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2001-03, Vol.88 (5), p.513-519
Hauptverfasser: Beauloye, Christophe, Bertrand, Luc, Krause, Ulrike, Marsin, Anne-Sophie, Dresselaers, Tom, Vanstapel, Florent, Vanoverschelde, Jean-Louis, Hue, Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 519
container_issue 5
container_start_page 513
container_title Circulation research
container_volume 88
creator Beauloye, Christophe
Bertrand, Luc
Krause, Ulrike
Marsin, Anne-Sophie
Dresselaers, Tom
Vanstapel, Florent
Vanoverschelde, Jean-Louis
Hue, Louis
description Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pHi) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pHi and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pHi and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pHi, being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pHi.
doi_str_mv 10.1161/01.RES.88.5.513
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76970253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76970253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4703-3f9d8472b71c693cff3a6851cb655158eedbb29e54c8de6e14c0541a65086803</originalsourceid><addsrcrecordid>eNpdkd9v0zAQgC0EYt3gmTcUgcRbsjv_ivOIxrZWmkCie7cc97JmuEmxE1X773HVCiSefD59vjt_x9gHhApR4zVg9fN2XRlTqUqheMUWqLgsparxNVsAQFPWQsAFu0zpGQCl4M1bdoHIZWNqtWDr72N5F8ZDsUp-S7veFath27f9lHKQ5tAPxbp_GlwOnop8WZKLU9G-FN_IR3LpmF4NU3SeQpiDi8V--Y696VxI9P58XrHHu9vHm2X58ON-dfP1ofSyBlGKrtkYWfO2Rq8b4btOOG0U-lYrhcoQbdqWN6SkNxvShNKDkui0AqMNiCv25VR2H8ffM6XJ7vp0HMMNNM7J1rqpgSuRwU__gc_jHPOfkuVZBJcoeYauT5CPY0qROruP_c7FF4tgj64toM2urTFW2ew6v_h4Lju3O9r8489yM_D5DLjkXeiiG3yf_nKN0KB0puSJOoxhoph-hflA0W7JhWlr8wpBAPKS5-2BQA1lzuTufwC3gZQD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212424142</pqid></control><display><type>article</type><title>No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Beauloye, Christophe ; Bertrand, Luc ; Krause, Ulrike ; Marsin, Anne-Sophie ; Dresselaers, Tom ; Vanstapel, Florent ; Vanoverschelde, Jean-Louis ; Hue, Louis</creator><creatorcontrib>Beauloye, Christophe ; Bertrand, Luc ; Krause, Ulrike ; Marsin, Anne-Sophie ; Dresselaers, Tom ; Vanstapel, Florent ; Vanoverschelde, Jean-Louis ; Hue, Louis</creatorcontrib><description>Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pHi) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pHi and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pHi and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pHi, being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pHi.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/01.RES.88.5.513</identifier><identifier>PMID: 11249875</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Animals ; Biological and medical sciences ; Calcium-Calmodulin-Dependent Protein Kinases - drug effects ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Cardiology. Vascular system ; Coronary heart disease ; Dose-Response Relationship, Drug ; Enzyme Activation - drug effects ; Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinases ; Heart ; Heart - drug effects ; Heart - physiology ; Hydrogen-Ion Concentration ; Insulin - pharmacology ; Insulin Receptor Substrate Proteins ; Male ; Medical sciences ; Myocardial Ischemia - physiopathology ; Myocardial Reperfusion ; Myocardium - cytology ; Myocardium - metabolism ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphoproteins - metabolism ; Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Rats, Wistar ; Receptor, Insulin - metabolism ; Ribosomal Protein S6 Kinases - drug effects ; Ribosomal Protein S6 Kinases - metabolism ; Signal Transduction</subject><ispartof>Circulation research, 2001-03, Vol.88 (5), p.513-519</ispartof><rights>2001 American Heart Association, Inc.</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Mar 16, 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4703-3f9d8472b71c693cff3a6851cb655158eedbb29e54c8de6e14c0541a65086803</citedby><cites>FETCH-LOGICAL-c4703-3f9d8472b71c693cff3a6851cb655158eedbb29e54c8de6e14c0541a65086803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3691,27933,27934</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=936056$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11249875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beauloye, Christophe</creatorcontrib><creatorcontrib>Bertrand, Luc</creatorcontrib><creatorcontrib>Krause, Ulrike</creatorcontrib><creatorcontrib>Marsin, Anne-Sophie</creatorcontrib><creatorcontrib>Dresselaers, Tom</creatorcontrib><creatorcontrib>Vanstapel, Florent</creatorcontrib><creatorcontrib>Vanoverschelde, Jean-Louis</creatorcontrib><creatorcontrib>Hue, Louis</creatorcontrib><title>No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pHi) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pHi and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pHi and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pHi, being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pHi.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - drug effects</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Cardiology. Vascular system</subject><subject>Coronary heart disease</subject><subject>Dose-Response Relationship, Drug</subject><subject>Enzyme Activation - drug effects</subject><subject>Glycogen Synthase Kinase 3</subject><subject>Glycogen Synthase Kinases</subject><subject>Heart</subject><subject>Heart - drug effects</subject><subject>Heart - physiology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Insulin - pharmacology</subject><subject>Insulin Receptor Substrate Proteins</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Myocardial Ischemia - physiopathology</subject><subject>Myocardial Reperfusion</subject><subject>Myocardium - cytology</subject><subject>Myocardium - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphoproteins - metabolism</subject><subject>Protein-Serine-Threonine Kinases</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptor, Insulin - metabolism</subject><subject>Ribosomal Protein S6 Kinases - drug effects</subject><subject>Ribosomal Protein S6 Kinases - metabolism</subject><subject>Signal Transduction</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd9v0zAQgC0EYt3gmTcUgcRbsjv_ivOIxrZWmkCie7cc97JmuEmxE1X773HVCiSefD59vjt_x9gHhApR4zVg9fN2XRlTqUqheMUWqLgsparxNVsAQFPWQsAFu0zpGQCl4M1bdoHIZWNqtWDr72N5F8ZDsUp-S7veFath27f9lHKQ5tAPxbp_GlwOnop8WZKLU9G-FN_IR3LpmF4NU3SeQpiDi8V--Y696VxI9P58XrHHu9vHm2X58ON-dfP1ofSyBlGKrtkYWfO2Rq8b4btOOG0U-lYrhcoQbdqWN6SkNxvShNKDkui0AqMNiCv25VR2H8ffM6XJ7vp0HMMNNM7J1rqpgSuRwU__gc_jHPOfkuVZBJcoeYauT5CPY0qROruP_c7FF4tgj64toM2urTFW2ew6v_h4Lju3O9r8489yM_D5DLjkXeiiG3yf_nKN0KB0puSJOoxhoph-hflA0W7JhWlr8wpBAPKS5-2BQA1lzuTufwC3gZQD</recordid><startdate>20010316</startdate><enddate>20010316</enddate><creator>Beauloye, Christophe</creator><creator>Bertrand, Luc</creator><creator>Krause, Ulrike</creator><creator>Marsin, Anne-Sophie</creator><creator>Dresselaers, Tom</creator><creator>Vanstapel, Florent</creator><creator>Vanoverschelde, Jean-Louis</creator><creator>Hue, Louis</creator><general>American Heart Association, Inc</general><general>Lippincott</general><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20010316</creationdate><title>No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH</title><author>Beauloye, Christophe ; Bertrand, Luc ; Krause, Ulrike ; Marsin, Anne-Sophie ; Dresselaers, Tom ; Vanstapel, Florent ; Vanoverschelde, Jean-Louis ; Hue, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4703-3f9d8472b71c693cff3a6851cb655158eedbb29e54c8de6e14c0541a65086803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - drug effects</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Cardiology. Vascular system</topic><topic>Coronary heart disease</topic><topic>Dose-Response Relationship, Drug</topic><topic>Enzyme Activation - drug effects</topic><topic>Glycogen Synthase Kinase 3</topic><topic>Glycogen Synthase Kinases</topic><topic>Heart</topic><topic>Heart - drug effects</topic><topic>Heart - physiology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Insulin - pharmacology</topic><topic>Insulin Receptor Substrate Proteins</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Myocardial Ischemia - physiopathology</topic><topic>Myocardial Reperfusion</topic><topic>Myocardium - cytology</topic><topic>Myocardium - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphoproteins - metabolism</topic><topic>Protein-Serine-Threonine Kinases</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptor, Insulin - metabolism</topic><topic>Ribosomal Protein S6 Kinases - drug effects</topic><topic>Ribosomal Protein S6 Kinases - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beauloye, Christophe</creatorcontrib><creatorcontrib>Bertrand, Luc</creatorcontrib><creatorcontrib>Krause, Ulrike</creatorcontrib><creatorcontrib>Marsin, Anne-Sophie</creatorcontrib><creatorcontrib>Dresselaers, Tom</creatorcontrib><creatorcontrib>Vanstapel, Florent</creatorcontrib><creatorcontrib>Vanoverschelde, Jean-Louis</creatorcontrib><creatorcontrib>Hue, Louis</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beauloye, Christophe</au><au>Bertrand, Luc</au><au>Krause, Ulrike</au><au>Marsin, Anne-Sophie</au><au>Dresselaers, Tom</au><au>Vanstapel, Florent</au><au>Vanoverschelde, Jean-Louis</au><au>Hue, Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2001-03-16</date><risdate>2001</risdate><volume>88</volume><issue>5</issue><spage>513</spage><epage>519</epage><pages>513-519</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pHi) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pHi and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pHi and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pHi, being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pHi.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>11249875</pmid><doi>10.1161/01.RES.88.5.513</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2001-03, Vol.88 (5), p.513-519
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_76970253
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Animals
Biological and medical sciences
Calcium-Calmodulin-Dependent Protein Kinases - drug effects
Calcium-Calmodulin-Dependent Protein Kinases - metabolism
Cardiology. Vascular system
Coronary heart disease
Dose-Response Relationship, Drug
Enzyme Activation - drug effects
Glycogen Synthase Kinase 3
Glycogen Synthase Kinases
Heart
Heart - drug effects
Heart - physiology
Hydrogen-Ion Concentration
Insulin - pharmacology
Insulin Receptor Substrate Proteins
Male
Medical sciences
Myocardial Ischemia - physiopathology
Myocardial Reperfusion
Myocardium - cytology
Myocardium - metabolism
Phosphatidylinositol 3-Kinases - metabolism
Phosphoproteins - metabolism
Protein-Serine-Threonine Kinases
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-akt
Rats
Rats, Wistar
Receptor, Insulin - metabolism
Ribosomal Protein S6 Kinases - drug effects
Ribosomal Protein S6 Kinases - metabolism
Signal Transduction
title No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No-Flow%20Ischemia%20Inhibits%20Insulin%20Signaling%20in%20Heart%20by%20Decreasing%20Intracellular%20pH&rft.jtitle=Circulation%20research&rft.au=Beauloye,%20Christophe&rft.date=2001-03-16&rft.volume=88&rft.issue=5&rft.spage=513&rft.epage=519&rft.pages=513-519&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/01.RES.88.5.513&rft_dat=%3Cproquest_cross%3E76970253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212424142&rft_id=info:pmid/11249875&rfr_iscdi=true