No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH
Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postis...
Gespeichert in:
Veröffentlicht in: | Circulation research 2001-03, Vol.88 (5), p.513-519 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 519 |
---|---|
container_issue | 5 |
container_start_page | 513 |
container_title | Circulation research |
container_volume | 88 |
creator | Beauloye, Christophe Bertrand, Luc Krause, Ulrike Marsin, Anne-Sophie Dresselaers, Tom Vanstapel, Florent Vanoverschelde, Jean-Louis Hue, Louis |
description | Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pHi) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pHi and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pHi and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pHi, being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pHi. |
doi_str_mv | 10.1161/01.RES.88.5.513 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76970253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76970253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4703-3f9d8472b71c693cff3a6851cb655158eedbb29e54c8de6e14c0541a65086803</originalsourceid><addsrcrecordid>eNpdkd9v0zAQgC0EYt3gmTcUgcRbsjv_ivOIxrZWmkCie7cc97JmuEmxE1X773HVCiSefD59vjt_x9gHhApR4zVg9fN2XRlTqUqheMUWqLgsparxNVsAQFPWQsAFu0zpGQCl4M1bdoHIZWNqtWDr72N5F8ZDsUp-S7veFath27f9lHKQ5tAPxbp_GlwOnop8WZKLU9G-FN_IR3LpmF4NU3SeQpiDi8V--Y696VxI9P58XrHHu9vHm2X58ON-dfP1ofSyBlGKrtkYWfO2Rq8b4btOOG0U-lYrhcoQbdqWN6SkNxvShNKDkui0AqMNiCv25VR2H8ffM6XJ7vp0HMMNNM7J1rqpgSuRwU__gc_jHPOfkuVZBJcoeYauT5CPY0qROruP_c7FF4tgj64toM2urTFW2ew6v_h4Lju3O9r8489yM_D5DLjkXeiiG3yf_nKN0KB0puSJOoxhoph-hflA0W7JhWlr8wpBAPKS5-2BQA1lzuTufwC3gZQD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212424142</pqid></control><display><type>article</type><title>No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Beauloye, Christophe ; Bertrand, Luc ; Krause, Ulrike ; Marsin, Anne-Sophie ; Dresselaers, Tom ; Vanstapel, Florent ; Vanoverschelde, Jean-Louis ; Hue, Louis</creator><creatorcontrib>Beauloye, Christophe ; Bertrand, Luc ; Krause, Ulrike ; Marsin, Anne-Sophie ; Dresselaers, Tom ; Vanstapel, Florent ; Vanoverschelde, Jean-Louis ; Hue, Louis</creatorcontrib><description>Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pHi) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pHi and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pHi and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pHi, being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pHi.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/01.RES.88.5.513</identifier><identifier>PMID: 11249875</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Animals ; Biological and medical sciences ; Calcium-Calmodulin-Dependent Protein Kinases - drug effects ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Cardiology. Vascular system ; Coronary heart disease ; Dose-Response Relationship, Drug ; Enzyme Activation - drug effects ; Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinases ; Heart ; Heart - drug effects ; Heart - physiology ; Hydrogen-Ion Concentration ; Insulin - pharmacology ; Insulin Receptor Substrate Proteins ; Male ; Medical sciences ; Myocardial Ischemia - physiopathology ; Myocardial Reperfusion ; Myocardium - cytology ; Myocardium - metabolism ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphoproteins - metabolism ; Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Rats, Wistar ; Receptor, Insulin - metabolism ; Ribosomal Protein S6 Kinases - drug effects ; Ribosomal Protein S6 Kinases - metabolism ; Signal Transduction</subject><ispartof>Circulation research, 2001-03, Vol.88 (5), p.513-519</ispartof><rights>2001 American Heart Association, Inc.</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Mar 16, 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4703-3f9d8472b71c693cff3a6851cb655158eedbb29e54c8de6e14c0541a65086803</citedby><cites>FETCH-LOGICAL-c4703-3f9d8472b71c693cff3a6851cb655158eedbb29e54c8de6e14c0541a65086803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3691,27933,27934</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=936056$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11249875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beauloye, Christophe</creatorcontrib><creatorcontrib>Bertrand, Luc</creatorcontrib><creatorcontrib>Krause, Ulrike</creatorcontrib><creatorcontrib>Marsin, Anne-Sophie</creatorcontrib><creatorcontrib>Dresselaers, Tom</creatorcontrib><creatorcontrib>Vanstapel, Florent</creatorcontrib><creatorcontrib>Vanoverschelde, Jean-Louis</creatorcontrib><creatorcontrib>Hue, Louis</creatorcontrib><title>No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pHi) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pHi and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pHi and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pHi, being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pHi.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - drug effects</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Cardiology. Vascular system</subject><subject>Coronary heart disease</subject><subject>Dose-Response Relationship, Drug</subject><subject>Enzyme Activation - drug effects</subject><subject>Glycogen Synthase Kinase 3</subject><subject>Glycogen Synthase Kinases</subject><subject>Heart</subject><subject>Heart - drug effects</subject><subject>Heart - physiology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Insulin - pharmacology</subject><subject>Insulin Receptor Substrate Proteins</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Myocardial Ischemia - physiopathology</subject><subject>Myocardial Reperfusion</subject><subject>Myocardium - cytology</subject><subject>Myocardium - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphoproteins - metabolism</subject><subject>Protein-Serine-Threonine Kinases</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptor, Insulin - metabolism</subject><subject>Ribosomal Protein S6 Kinases - drug effects</subject><subject>Ribosomal Protein S6 Kinases - metabolism</subject><subject>Signal Transduction</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd9v0zAQgC0EYt3gmTcUgcRbsjv_ivOIxrZWmkCie7cc97JmuEmxE1X773HVCiSefD59vjt_x9gHhApR4zVg9fN2XRlTqUqheMUWqLgsparxNVsAQFPWQsAFu0zpGQCl4M1bdoHIZWNqtWDr72N5F8ZDsUp-S7veFath27f9lHKQ5tAPxbp_GlwOnop8WZKLU9G-FN_IR3LpmF4NU3SeQpiDi8V--Y696VxI9P58XrHHu9vHm2X58ON-dfP1ofSyBlGKrtkYWfO2Rq8b4btOOG0U-lYrhcoQbdqWN6SkNxvShNKDkui0AqMNiCv25VR2H8ffM6XJ7vp0HMMNNM7J1rqpgSuRwU__gc_jHPOfkuVZBJcoeYauT5CPY0qROruP_c7FF4tgj64toM2urTFW2ew6v_h4Lju3O9r8489yM_D5DLjkXeiiG3yf_nKN0KB0puSJOoxhoph-hflA0W7JhWlr8wpBAPKS5-2BQA1lzuTufwC3gZQD</recordid><startdate>20010316</startdate><enddate>20010316</enddate><creator>Beauloye, Christophe</creator><creator>Bertrand, Luc</creator><creator>Krause, Ulrike</creator><creator>Marsin, Anne-Sophie</creator><creator>Dresselaers, Tom</creator><creator>Vanstapel, Florent</creator><creator>Vanoverschelde, Jean-Louis</creator><creator>Hue, Louis</creator><general>American Heart Association, Inc</general><general>Lippincott</general><general>Lippincott Williams & Wilkins Ovid Technologies</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20010316</creationdate><title>No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH</title><author>Beauloye, Christophe ; Bertrand, Luc ; Krause, Ulrike ; Marsin, Anne-Sophie ; Dresselaers, Tom ; Vanstapel, Florent ; Vanoverschelde, Jean-Louis ; Hue, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4703-3f9d8472b71c693cff3a6851cb655158eedbb29e54c8de6e14c0541a65086803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - drug effects</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Cardiology. Vascular system</topic><topic>Coronary heart disease</topic><topic>Dose-Response Relationship, Drug</topic><topic>Enzyme Activation - drug effects</topic><topic>Glycogen Synthase Kinase 3</topic><topic>Glycogen Synthase Kinases</topic><topic>Heart</topic><topic>Heart - drug effects</topic><topic>Heart - physiology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Insulin - pharmacology</topic><topic>Insulin Receptor Substrate Proteins</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Myocardial Ischemia - physiopathology</topic><topic>Myocardial Reperfusion</topic><topic>Myocardium - cytology</topic><topic>Myocardium - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphoproteins - metabolism</topic><topic>Protein-Serine-Threonine Kinases</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptor, Insulin - metabolism</topic><topic>Ribosomal Protein S6 Kinases - drug effects</topic><topic>Ribosomal Protein S6 Kinases - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beauloye, Christophe</creatorcontrib><creatorcontrib>Bertrand, Luc</creatorcontrib><creatorcontrib>Krause, Ulrike</creatorcontrib><creatorcontrib>Marsin, Anne-Sophie</creatorcontrib><creatorcontrib>Dresselaers, Tom</creatorcontrib><creatorcontrib>Vanstapel, Florent</creatorcontrib><creatorcontrib>Vanoverschelde, Jean-Louis</creatorcontrib><creatorcontrib>Hue, Louis</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beauloye, Christophe</au><au>Bertrand, Luc</au><au>Krause, Ulrike</au><au>Marsin, Anne-Sophie</au><au>Dresselaers, Tom</au><au>Vanstapel, Florent</au><au>Vanoverschelde, Jean-Louis</au><au>Hue, Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2001-03-16</date><risdate>2001</risdate><volume>88</volume><issue>5</issue><spage>513</spage><epage>519</epage><pages>513-519</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pHi) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pHi and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pHi and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pHi, being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pHi.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>11249875</pmid><doi>10.1161/01.RES.88.5.513</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7330 |
ispartof | Circulation research, 2001-03, Vol.88 (5), p.513-519 |
issn | 0009-7330 1524-4571 |
language | eng |
recordid | cdi_proquest_miscellaneous_76970253 |
source | MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete |
subjects | Animals Biological and medical sciences Calcium-Calmodulin-Dependent Protein Kinases - drug effects Calcium-Calmodulin-Dependent Protein Kinases - metabolism Cardiology. Vascular system Coronary heart disease Dose-Response Relationship, Drug Enzyme Activation - drug effects Glycogen Synthase Kinase 3 Glycogen Synthase Kinases Heart Heart - drug effects Heart - physiology Hydrogen-Ion Concentration Insulin - pharmacology Insulin Receptor Substrate Proteins Male Medical sciences Myocardial Ischemia - physiopathology Myocardial Reperfusion Myocardium - cytology Myocardium - metabolism Phosphatidylinositol 3-Kinases - metabolism Phosphoproteins - metabolism Protein-Serine-Threonine Kinases Proto-Oncogene Proteins - metabolism Proto-Oncogene Proteins c-akt Rats Rats, Wistar Receptor, Insulin - metabolism Ribosomal Protein S6 Kinases - drug effects Ribosomal Protein S6 Kinases - metabolism Signal Transduction |
title | No-Flow Ischemia Inhibits Insulin Signaling in Heart by Decreasing Intracellular pH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No-Flow%20Ischemia%20Inhibits%20Insulin%20Signaling%20in%20Heart%20by%20Decreasing%20Intracellular%20pH&rft.jtitle=Circulation%20research&rft.au=Beauloye,%20Christophe&rft.date=2001-03-16&rft.volume=88&rft.issue=5&rft.spage=513&rft.epage=519&rft.pages=513-519&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/01.RES.88.5.513&rft_dat=%3Cproquest_cross%3E76970253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212424142&rft_id=info:pmid/11249875&rfr_iscdi=true |