Automated skin lesion screening--a new approach
Automated melanoma diagnosis is a popular focus of research, with numerous papers describing techniques and results. In our study, we identified two possible problems with the current method of automated diagnosis, where systems are intended to reproduce histopathology results. We propose a new meth...
Gespeichert in:
Veröffentlicht in: | Melanoma research 2001-02, Vol.11 (1), p.31-35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Melanoma research |
container_volume | 11 |
creator | Day, G R Barbour, R H |
description | Automated melanoma diagnosis is a popular focus of research, with numerous papers describing techniques and results. In our study, we identified two possible problems with the current method of automated diagnosis, where systems are intended to reproduce histopathology results. We propose a new method of identifying problematic skin lesions, namely attempting to reproduce algorithmically the perceptions of dermatologists as to whether the lesion should be excised. In the best case, our initial model reproduced the decision of dermatologists in over 80% of cases. These results suggest that reproducing the decision to excise may be a valuable adjunct to current methodology. |
doi_str_mv | 10.1097/00008390-200102000-00004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76970035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76970035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-b7c2f253491ebff55f8de98a1c016a0532dfe785e89f9018cf2942e7cf4814c3</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhnMAsTH4C6gnbmF2ki7JcZqAIU3isnuUpQ4U-jGaVoh_T8cG-GBLrz9e-WEsQ7hDsHoOYxhpgQsAhDEBP0jqjE3BLoAbK3HCLlN6G_ta5vKCTRBFrhDllM2XQ9_WvqciS-9lk1WUyrbJUuiImrJ54dxnDX1mfr_vWh9er9h59FWi61Odse3D_Xa15pvnx6fVcsODErrnOx1EFLlUFmkXY55HU5A1HgPgwkMuRRFJm5yMjRbQhCisEqRDVAZVkDN2ezw7un4MlHpXlylQVfmG2iE5vbAaYHxmxsxxMHRtSh1Ft-_K2ndfDsEd-LhfPu6Pz4-kxtWbk8ewq6n4XzzBkd9eFWEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76970035</pqid></control><display><type>article</type><title>Automated skin lesion screening--a new approach</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Day, G R ; Barbour, R H</creator><creatorcontrib>Day, G R ; Barbour, R H</creatorcontrib><description>Automated melanoma diagnosis is a popular focus of research, with numerous papers describing techniques and results. In our study, we identified two possible problems with the current method of automated diagnosis, where systems are intended to reproduce histopathology results. We propose a new method of identifying problematic skin lesions, namely attempting to reproduce algorithmically the perceptions of dermatologists as to whether the lesion should be excised. In the best case, our initial model reproduced the decision of dermatologists in over 80% of cases. These results suggest that reproducing the decision to excise may be a valuable adjunct to current methodology.</description><identifier>ISSN: 0960-8931</identifier><identifier>DOI: 10.1097/00008390-200102000-00004</identifier><identifier>PMID: 11254113</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Automation ; Dermatology - methods ; Humans ; Image Processing, Computer-Assisted ; Medical Oncology - methods ; Melanoma - diagnosis ; ROC Curve ; Skin Neoplasms - diagnosis</subject><ispartof>Melanoma research, 2001-02, Vol.11 (1), p.31-35</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-b7c2f253491ebff55f8de98a1c016a0532dfe785e89f9018cf2942e7cf4814c3</citedby><cites>FETCH-LOGICAL-c427t-b7c2f253491ebff55f8de98a1c016a0532dfe785e89f9018cf2942e7cf4814c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11254113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Day, G R</creatorcontrib><creatorcontrib>Barbour, R H</creatorcontrib><title>Automated skin lesion screening--a new approach</title><title>Melanoma research</title><addtitle>Melanoma Res</addtitle><description>Automated melanoma diagnosis is a popular focus of research, with numerous papers describing techniques and results. In our study, we identified two possible problems with the current method of automated diagnosis, where systems are intended to reproduce histopathology results. We propose a new method of identifying problematic skin lesions, namely attempting to reproduce algorithmically the perceptions of dermatologists as to whether the lesion should be excised. In the best case, our initial model reproduced the decision of dermatologists in over 80% of cases. These results suggest that reproducing the decision to excise may be a valuable adjunct to current methodology.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Dermatology - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Medical Oncology - methods</subject><subject>Melanoma - diagnosis</subject><subject>ROC Curve</subject><subject>Skin Neoplasms - diagnosis</subject><issn>0960-8931</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1PwzAMhnMAsTH4C6gnbmF2ki7JcZqAIU3isnuUpQ4U-jGaVoh_T8cG-GBLrz9e-WEsQ7hDsHoOYxhpgQsAhDEBP0jqjE3BLoAbK3HCLlN6G_ta5vKCTRBFrhDllM2XQ9_WvqciS-9lk1WUyrbJUuiImrJ54dxnDX1mfr_vWh9er9h59FWi61Odse3D_Xa15pvnx6fVcsODErrnOx1EFLlUFmkXY55HU5A1HgPgwkMuRRFJm5yMjRbQhCisEqRDVAZVkDN2ezw7un4MlHpXlylQVfmG2iE5vbAaYHxmxsxxMHRtSh1Ft-_K2ndfDsEd-LhfPu6Pz4-kxtWbk8ewq6n4XzzBkd9eFWEo</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Day, G R</creator><creator>Barbour, R H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010201</creationdate><title>Automated skin lesion screening--a new approach</title><author>Day, G R ; Barbour, R H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-b7c2f253491ebff55f8de98a1c016a0532dfe785e89f9018cf2942e7cf4814c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Dermatology - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Medical Oncology - methods</topic><topic>Melanoma - diagnosis</topic><topic>ROC Curve</topic><topic>Skin Neoplasms - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Day, G R</creatorcontrib><creatorcontrib>Barbour, R H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Melanoma research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Day, G R</au><au>Barbour, R H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated skin lesion screening--a new approach</atitle><jtitle>Melanoma research</jtitle><addtitle>Melanoma Res</addtitle><date>2001-02-01</date><risdate>2001</risdate><volume>11</volume><issue>1</issue><spage>31</spage><epage>35</epage><pages>31-35</pages><issn>0960-8931</issn><abstract>Automated melanoma diagnosis is a popular focus of research, with numerous papers describing techniques and results. In our study, we identified two possible problems with the current method of automated diagnosis, where systems are intended to reproduce histopathology results. We propose a new method of identifying problematic skin lesions, namely attempting to reproduce algorithmically the perceptions of dermatologists as to whether the lesion should be excised. In the best case, our initial model reproduced the decision of dermatologists in over 80% of cases. These results suggest that reproducing the decision to excise may be a valuable adjunct to current methodology.</abstract><cop>England</cop><pmid>11254113</pmid><doi>10.1097/00008390-200102000-00004</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8931 |
ispartof | Melanoma research, 2001-02, Vol.11 (1), p.31-35 |
issn | 0960-8931 |
language | eng |
recordid | cdi_proquest_miscellaneous_76970035 |
source | MEDLINE; Journals@Ovid Complete |
subjects | Algorithms Automation Dermatology - methods Humans Image Processing, Computer-Assisted Medical Oncology - methods Melanoma - diagnosis ROC Curve Skin Neoplasms - diagnosis |
title | Automated skin lesion screening--a new approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20skin%20lesion%20screening--a%20new%20approach&rft.jtitle=Melanoma%20research&rft.au=Day,%20G%20R&rft.date=2001-02-01&rft.volume=11&rft.issue=1&rft.spage=31&rft.epage=35&rft.pages=31-35&rft.issn=0960-8931&rft_id=info:doi/10.1097/00008390-200102000-00004&rft_dat=%3Cproquest_cross%3E76970035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76970035&rft_id=info:pmid/11254113&rfr_iscdi=true |