Automated skin lesion screening--a new approach

Automated melanoma diagnosis is a popular focus of research, with numerous papers describing techniques and results. In our study, we identified two possible problems with the current method of automated diagnosis, where systems are intended to reproduce histopathology results. We propose a new meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Melanoma research 2001-02, Vol.11 (1), p.31-35
Hauptverfasser: Day, G R, Barbour, R H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 31
container_title Melanoma research
container_volume 11
creator Day, G R
Barbour, R H
description Automated melanoma diagnosis is a popular focus of research, with numerous papers describing techniques and results. In our study, we identified two possible problems with the current method of automated diagnosis, where systems are intended to reproduce histopathology results. We propose a new method of identifying problematic skin lesions, namely attempting to reproduce algorithmically the perceptions of dermatologists as to whether the lesion should be excised. In the best case, our initial model reproduced the decision of dermatologists in over 80% of cases. These results suggest that reproducing the decision to excise may be a valuable adjunct to current methodology.
doi_str_mv 10.1097/00008390-200102000-00004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76970035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76970035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-b7c2f253491ebff55f8de98a1c016a0532dfe785e89f9018cf2942e7cf4814c3</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhnMAsTH4C6gnbmF2ki7JcZqAIU3isnuUpQ4U-jGaVoh_T8cG-GBLrz9e-WEsQ7hDsHoOYxhpgQsAhDEBP0jqjE3BLoAbK3HCLlN6G_ta5vKCTRBFrhDllM2XQ9_WvqciS-9lk1WUyrbJUuiImrJ54dxnDX1mfr_vWh9er9h59FWi61Odse3D_Xa15pvnx6fVcsODErrnOx1EFLlUFmkXY55HU5A1HgPgwkMuRRFJm5yMjRbQhCisEqRDVAZVkDN2ezw7un4MlHpXlylQVfmG2iE5vbAaYHxmxsxxMHRtSh1Ft-_K2ndfDsEd-LhfPu6Pz4-kxtWbk8ewq6n4XzzBkd9eFWEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76970035</pqid></control><display><type>article</type><title>Automated skin lesion screening--a new approach</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Day, G R ; Barbour, R H</creator><creatorcontrib>Day, G R ; Barbour, R H</creatorcontrib><description>Automated melanoma diagnosis is a popular focus of research, with numerous papers describing techniques and results. In our study, we identified two possible problems with the current method of automated diagnosis, where systems are intended to reproduce histopathology results. We propose a new method of identifying problematic skin lesions, namely attempting to reproduce algorithmically the perceptions of dermatologists as to whether the lesion should be excised. In the best case, our initial model reproduced the decision of dermatologists in over 80% of cases. These results suggest that reproducing the decision to excise may be a valuable adjunct to current methodology.</description><identifier>ISSN: 0960-8931</identifier><identifier>DOI: 10.1097/00008390-200102000-00004</identifier><identifier>PMID: 11254113</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Automation ; Dermatology - methods ; Humans ; Image Processing, Computer-Assisted ; Medical Oncology - methods ; Melanoma - diagnosis ; ROC Curve ; Skin Neoplasms - diagnosis</subject><ispartof>Melanoma research, 2001-02, Vol.11 (1), p.31-35</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-b7c2f253491ebff55f8de98a1c016a0532dfe785e89f9018cf2942e7cf4814c3</citedby><cites>FETCH-LOGICAL-c427t-b7c2f253491ebff55f8de98a1c016a0532dfe785e89f9018cf2942e7cf4814c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11254113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Day, G R</creatorcontrib><creatorcontrib>Barbour, R H</creatorcontrib><title>Automated skin lesion screening--a new approach</title><title>Melanoma research</title><addtitle>Melanoma Res</addtitle><description>Automated melanoma diagnosis is a popular focus of research, with numerous papers describing techniques and results. In our study, we identified two possible problems with the current method of automated diagnosis, where systems are intended to reproduce histopathology results. We propose a new method of identifying problematic skin lesions, namely attempting to reproduce algorithmically the perceptions of dermatologists as to whether the lesion should be excised. In the best case, our initial model reproduced the decision of dermatologists in over 80% of cases. These results suggest that reproducing the decision to excise may be a valuable adjunct to current methodology.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Dermatology - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Medical Oncology - methods</subject><subject>Melanoma - diagnosis</subject><subject>ROC Curve</subject><subject>Skin Neoplasms - diagnosis</subject><issn>0960-8931</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1PwzAMhnMAsTH4C6gnbmF2ki7JcZqAIU3isnuUpQ4U-jGaVoh_T8cG-GBLrz9e-WEsQ7hDsHoOYxhpgQsAhDEBP0jqjE3BLoAbK3HCLlN6G_ta5vKCTRBFrhDllM2XQ9_WvqciS-9lk1WUyrbJUuiImrJ54dxnDX1mfr_vWh9er9h59FWi61Odse3D_Xa15pvnx6fVcsODErrnOx1EFLlUFmkXY55HU5A1HgPgwkMuRRFJm5yMjRbQhCisEqRDVAZVkDN2ezw7un4MlHpXlylQVfmG2iE5vbAaYHxmxsxxMHRtSh1Ft-_K2ndfDsEd-LhfPu6Pz4-kxtWbk8ewq6n4XzzBkd9eFWEo</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Day, G R</creator><creator>Barbour, R H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010201</creationdate><title>Automated skin lesion screening--a new approach</title><author>Day, G R ; Barbour, R H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-b7c2f253491ebff55f8de98a1c016a0532dfe785e89f9018cf2942e7cf4814c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Dermatology - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Medical Oncology - methods</topic><topic>Melanoma - diagnosis</topic><topic>ROC Curve</topic><topic>Skin Neoplasms - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Day, G R</creatorcontrib><creatorcontrib>Barbour, R H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Melanoma research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Day, G R</au><au>Barbour, R H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated skin lesion screening--a new approach</atitle><jtitle>Melanoma research</jtitle><addtitle>Melanoma Res</addtitle><date>2001-02-01</date><risdate>2001</risdate><volume>11</volume><issue>1</issue><spage>31</spage><epage>35</epage><pages>31-35</pages><issn>0960-8931</issn><abstract>Automated melanoma diagnosis is a popular focus of research, with numerous papers describing techniques and results. In our study, we identified two possible problems with the current method of automated diagnosis, where systems are intended to reproduce histopathology results. We propose a new method of identifying problematic skin lesions, namely attempting to reproduce algorithmically the perceptions of dermatologists as to whether the lesion should be excised. In the best case, our initial model reproduced the decision of dermatologists in over 80% of cases. These results suggest that reproducing the decision to excise may be a valuable adjunct to current methodology.</abstract><cop>England</cop><pmid>11254113</pmid><doi>10.1097/00008390-200102000-00004</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-8931
ispartof Melanoma research, 2001-02, Vol.11 (1), p.31-35
issn 0960-8931
language eng
recordid cdi_proquest_miscellaneous_76970035
source MEDLINE; Journals@Ovid Complete
subjects Algorithms
Automation
Dermatology - methods
Humans
Image Processing, Computer-Assisted
Medical Oncology - methods
Melanoma - diagnosis
ROC Curve
Skin Neoplasms - diagnosis
title Automated skin lesion screening--a new approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20skin%20lesion%20screening--a%20new%20approach&rft.jtitle=Melanoma%20research&rft.au=Day,%20G%20R&rft.date=2001-02-01&rft.volume=11&rft.issue=1&rft.spage=31&rft.epage=35&rft.pages=31-35&rft.issn=0960-8931&rft_id=info:doi/10.1097/00008390-200102000-00004&rft_dat=%3Cproquest_cross%3E76970035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76970035&rft_id=info:pmid/11254113&rfr_iscdi=true