Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation

The process of background adaptation in the toad Xenopus laevis is controlled by neurons in the suprachiasmatic nucleus (SC) that inhibit the release of α‐melanophore‐stimulating hormone from the neuroendocrine melanotrope cells in the pituitary gland. We have identified the structural and functiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2001-04, Vol.432 (3), p.346-355
Hauptverfasser: Kramer, Bianca M.R., Welting, Joyce, Berghs, Constance A.F.M., Jenks, Bruce G., Roubos, Eric W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 3
container_start_page 346
container_title Journal of comparative neurology (1911)
container_volume 432
creator Kramer, Bianca M.R.
Welting, Joyce
Berghs, Constance A.F.M.
Jenks, Bruce G.
Roubos, Eric W.
description The process of background adaptation in the toad Xenopus laevis is controlled by neurons in the suprachiasmatic nucleus (SC) that inhibit the release of α‐melanophore‐stimulating hormone from the neuroendocrine melanotrope cells in the pituitary gland. We have identified the structural and functional organization of different neuropeptide Y (NPY)‐containing cell groups in the Xenopus SC in relation to background adaptation. A ventrolateral, a dorsomedial, and a caudal group were distinguished, differing in location as well as in number, size, and shape of their cells. They also show different degrees of NPY immunoreactivity in response to different background adaptation conditions. In situ hybridization using a Xenopus mRNA probe for the exocytosis protein DOC2 revealed that melanotrope cells of black‐adapted animals have a much higher expression of DOC2‐mRNA than white‐adapted ones. This establishes that the degree of DOC2‐mRNA expression is a good parameter to measure cellular secretory activity in Xenopus. We show that in the ventrolateral SC group, more NPY‐positive neurons express DOC2‐mRNA in white‐ than in black‐adapted animals. In contrast, NPY‐positive neurons in the dorsomedial group have a high secretory activity under the black‐adaptation condition. We propose that in black‐adapted animals, NPY‐positive neurons in the ventrolateral group, known to inhibit the melanotrope cells in white‐adapted animals synaptically, are inhibited by NPY‐containing interneurons in the dorsmedial group. NPY‐positive neurons in the caudal group have similar secretory dynamics as the dorsomedial NPY neurons, indicating that they also play a role in background adaptation, distinct from that exerted by the ventrolateral and dorsomedial group. J. Comp. Neurol. 432:346–355, 2001. © 2001 Wiley‐Liss, Inc.
doi_str_mv 10.1002/cne.1107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76964222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18013145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3867-597c819712ef1b4f29d25dbe0cf0d9707cbfb6e5c94c1153a2f2bdb7b308bb7f3</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS1URG8LEr8AeVWxSfE4iR0vq6u-RFWQKNCdZTt26zaxg51A21_fXG4EK8RqHuebs5iD0Fsgh0AI_WCCPQQg_AVaARGsEA2DHbSaJSiEYHwX7eV8RwgRomxeoV0AWjEKdIX6kymY0cegOhzTjQr-SW1GHB0eby3O05CUufUq9_Pe4DCZzk55I1_bEIe57ZT96TP2ASfbbY_HiLUy9zcpTqHFqlXD-Ft4jV461WX7Zqn76OvJ8dX6rLj4dHq-ProoTNkwXtSCmwYEB2od6MpR0dK61ZYYR1rBCTfaaWZrIyoDUJeKOqpbzXVJGq25K_fRwdZ3SPHHZPMoe5-N7ToVbJyy5EywilL6XxAaAiVU9Qy-34ImxZyTdXJIvlfpUQKRmwzknIHcZDCj7xbPSfe2_QsuT5-BYgv88p19_KeRXF8eL4YL7_NoH_7wKt1Lxktey--Xp_Lbl-uP4op9lnX5DC-voYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18013145</pqid></control><display><type>article</type><title>Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>Kramer, Bianca M.R. ; Welting, Joyce ; Berghs, Constance A.F.M. ; Jenks, Bruce G. ; Roubos, Eric W.</creator><creatorcontrib>Kramer, Bianca M.R. ; Welting, Joyce ; Berghs, Constance A.F.M. ; Jenks, Bruce G. ; Roubos, Eric W.</creatorcontrib><description>The process of background adaptation in the toad Xenopus laevis is controlled by neurons in the suprachiasmatic nucleus (SC) that inhibit the release of α‐melanophore‐stimulating hormone from the neuroendocrine melanotrope cells in the pituitary gland. We have identified the structural and functional organization of different neuropeptide Y (NPY)‐containing cell groups in the Xenopus SC in relation to background adaptation. A ventrolateral, a dorsomedial, and a caudal group were distinguished, differing in location as well as in number, size, and shape of their cells. They also show different degrees of NPY immunoreactivity in response to different background adaptation conditions. In situ hybridization using a Xenopus mRNA probe for the exocytosis protein DOC2 revealed that melanotrope cells of black‐adapted animals have a much higher expression of DOC2‐mRNA than white‐adapted ones. This establishes that the degree of DOC2‐mRNA expression is a good parameter to measure cellular secretory activity in Xenopus. We show that in the ventrolateral SC group, more NPY‐positive neurons express DOC2‐mRNA in white‐ than in black‐adapted animals. In contrast, NPY‐positive neurons in the dorsomedial group have a high secretory activity under the black‐adaptation condition. We propose that in black‐adapted animals, NPY‐positive neurons in the ventrolateral group, known to inhibit the melanotrope cells in white‐adapted animals synaptically, are inhibited by NPY‐containing interneurons in the dorsmedial group. NPY‐positive neurons in the caudal group have similar secretory dynamics as the dorsomedial NPY neurons, indicating that they also play a role in background adaptation, distinct from that exerted by the ventrolateral and dorsomedial group. J. Comp. Neurol. 432:346–355, 2001. © 2001 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.1107</identifier><identifier>PMID: 11246212</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>activity control ; Adaptation, Physiological ; alpha -Melanophore-stimulating hormone ; Animals ; cellular activity ; exocytosis protein ; Humans ; Immunohistochemistry ; In Situ Hybridization ; neuroendocrine cells ; Neuropeptide Y - metabolism ; NPY ; Pituitary Gland - cytology ; Pituitary Gland - metabolism ; Suprachiasmatic Nucleus - anatomy &amp; histology ; Suprachiasmatic Nucleus - cytology ; Suprachiasmatic Nucleus - physiology ; Xenopus ; Xenopus laevis ; Xenopus laevis - anatomy &amp; histology ; Xenopus laevis - physiology</subject><ispartof>Journal of comparative neurology (1911), 2001-04, Vol.432 (3), p.346-355</ispartof><rights>Copyright © 2001 Wiley‐Liss, Inc.</rights><rights>Copyright 2001 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3867-597c819712ef1b4f29d25dbe0cf0d9707cbfb6e5c94c1153a2f2bdb7b308bb7f3</citedby><cites>FETCH-LOGICAL-c3867-597c819712ef1b4f29d25dbe0cf0d9707cbfb6e5c94c1153a2f2bdb7b308bb7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.1107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.1107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11246212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kramer, Bianca M.R.</creatorcontrib><creatorcontrib>Welting, Joyce</creatorcontrib><creatorcontrib>Berghs, Constance A.F.M.</creatorcontrib><creatorcontrib>Jenks, Bruce G.</creatorcontrib><creatorcontrib>Roubos, Eric W.</creatorcontrib><title>Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>The process of background adaptation in the toad Xenopus laevis is controlled by neurons in the suprachiasmatic nucleus (SC) that inhibit the release of α‐melanophore‐stimulating hormone from the neuroendocrine melanotrope cells in the pituitary gland. We have identified the structural and functional organization of different neuropeptide Y (NPY)‐containing cell groups in the Xenopus SC in relation to background adaptation. A ventrolateral, a dorsomedial, and a caudal group were distinguished, differing in location as well as in number, size, and shape of their cells. They also show different degrees of NPY immunoreactivity in response to different background adaptation conditions. In situ hybridization using a Xenopus mRNA probe for the exocytosis protein DOC2 revealed that melanotrope cells of black‐adapted animals have a much higher expression of DOC2‐mRNA than white‐adapted ones. This establishes that the degree of DOC2‐mRNA expression is a good parameter to measure cellular secretory activity in Xenopus. We show that in the ventrolateral SC group, more NPY‐positive neurons express DOC2‐mRNA in white‐ than in black‐adapted animals. In contrast, NPY‐positive neurons in the dorsomedial group have a high secretory activity under the black‐adaptation condition. We propose that in black‐adapted animals, NPY‐positive neurons in the ventrolateral group, known to inhibit the melanotrope cells in white‐adapted animals synaptically, are inhibited by NPY‐containing interneurons in the dorsmedial group. NPY‐positive neurons in the caudal group have similar secretory dynamics as the dorsomedial NPY neurons, indicating that they also play a role in background adaptation, distinct from that exerted by the ventrolateral and dorsomedial group. J. Comp. Neurol. 432:346–355, 2001. © 2001 Wiley‐Liss, Inc.</description><subject>activity control</subject><subject>Adaptation, Physiological</subject><subject>alpha -Melanophore-stimulating hormone</subject><subject>Animals</subject><subject>cellular activity</subject><subject>exocytosis protein</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>neuroendocrine cells</subject><subject>Neuropeptide Y - metabolism</subject><subject>NPY</subject><subject>Pituitary Gland - cytology</subject><subject>Pituitary Gland - metabolism</subject><subject>Suprachiasmatic Nucleus - anatomy &amp; histology</subject><subject>Suprachiasmatic Nucleus - cytology</subject><subject>Suprachiasmatic Nucleus - physiology</subject><subject>Xenopus</subject><subject>Xenopus laevis</subject><subject>Xenopus laevis - anatomy &amp; histology</subject><subject>Xenopus laevis - physiology</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1TAQhS1URG8LEr8AeVWxSfE4iR0vq6u-RFWQKNCdZTt26zaxg51A21_fXG4EK8RqHuebs5iD0Fsgh0AI_WCCPQQg_AVaARGsEA2DHbSaJSiEYHwX7eV8RwgRomxeoV0AWjEKdIX6kymY0cegOhzTjQr-SW1GHB0eby3O05CUufUq9_Pe4DCZzk55I1_bEIe57ZT96TP2ASfbbY_HiLUy9zcpTqHFqlXD-Ft4jV461WX7Zqn76OvJ8dX6rLj4dHq-ProoTNkwXtSCmwYEB2od6MpR0dK61ZYYR1rBCTfaaWZrIyoDUJeKOqpbzXVJGq25K_fRwdZ3SPHHZPMoe5-N7ToVbJyy5EywilL6XxAaAiVU9Qy-34ImxZyTdXJIvlfpUQKRmwzknIHcZDCj7xbPSfe2_QsuT5-BYgv88p19_KeRXF8eL4YL7_NoH_7wKt1Lxktey--Xp_Lbl-uP4op9lnX5DC-voYk</recordid><startdate>20010409</startdate><enddate>20010409</enddate><creator>Kramer, Bianca M.R.</creator><creator>Welting, Joyce</creator><creator>Berghs, Constance A.F.M.</creator><creator>Jenks, Bruce G.</creator><creator>Roubos, Eric W.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20010409</creationdate><title>Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation</title><author>Kramer, Bianca M.R. ; Welting, Joyce ; Berghs, Constance A.F.M. ; Jenks, Bruce G. ; Roubos, Eric W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3867-597c819712ef1b4f29d25dbe0cf0d9707cbfb6e5c94c1153a2f2bdb7b308bb7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>activity control</topic><topic>Adaptation, Physiological</topic><topic>alpha -Melanophore-stimulating hormone</topic><topic>Animals</topic><topic>cellular activity</topic><topic>exocytosis protein</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>neuroendocrine cells</topic><topic>Neuropeptide Y - metabolism</topic><topic>NPY</topic><topic>Pituitary Gland - cytology</topic><topic>Pituitary Gland - metabolism</topic><topic>Suprachiasmatic Nucleus - anatomy &amp; histology</topic><topic>Suprachiasmatic Nucleus - cytology</topic><topic>Suprachiasmatic Nucleus - physiology</topic><topic>Xenopus</topic><topic>Xenopus laevis</topic><topic>Xenopus laevis - anatomy &amp; histology</topic><topic>Xenopus laevis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kramer, Bianca M.R.</creatorcontrib><creatorcontrib>Welting, Joyce</creatorcontrib><creatorcontrib>Berghs, Constance A.F.M.</creatorcontrib><creatorcontrib>Jenks, Bruce G.</creatorcontrib><creatorcontrib>Roubos, Eric W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kramer, Bianca M.R.</au><au>Welting, Joyce</au><au>Berghs, Constance A.F.M.</au><au>Jenks, Bruce G.</au><au>Roubos, Eric W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2001-04-09</date><risdate>2001</risdate><volume>432</volume><issue>3</issue><spage>346</spage><epage>355</epage><pages>346-355</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>The process of background adaptation in the toad Xenopus laevis is controlled by neurons in the suprachiasmatic nucleus (SC) that inhibit the release of α‐melanophore‐stimulating hormone from the neuroendocrine melanotrope cells in the pituitary gland. We have identified the structural and functional organization of different neuropeptide Y (NPY)‐containing cell groups in the Xenopus SC in relation to background adaptation. A ventrolateral, a dorsomedial, and a caudal group were distinguished, differing in location as well as in number, size, and shape of their cells. They also show different degrees of NPY immunoreactivity in response to different background adaptation conditions. In situ hybridization using a Xenopus mRNA probe for the exocytosis protein DOC2 revealed that melanotrope cells of black‐adapted animals have a much higher expression of DOC2‐mRNA than white‐adapted ones. This establishes that the degree of DOC2‐mRNA expression is a good parameter to measure cellular secretory activity in Xenopus. We show that in the ventrolateral SC group, more NPY‐positive neurons express DOC2‐mRNA in white‐ than in black‐adapted animals. In contrast, NPY‐positive neurons in the dorsomedial group have a high secretory activity under the black‐adaptation condition. We propose that in black‐adapted animals, NPY‐positive neurons in the ventrolateral group, known to inhibit the melanotrope cells in white‐adapted animals synaptically, are inhibited by NPY‐containing interneurons in the dorsmedial group. NPY‐positive neurons in the caudal group have similar secretory dynamics as the dorsomedial NPY neurons, indicating that they also play a role in background adaptation, distinct from that exerted by the ventrolateral and dorsomedial group. J. Comp. Neurol. 432:346–355, 2001. © 2001 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11246212</pmid><doi>10.1002/cne.1107</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2001-04, Vol.432 (3), p.346-355
issn 0021-9967
1096-9861
language eng
recordid cdi_proquest_miscellaneous_76964222
source MEDLINE; Wiley Online Library Journals
subjects activity control
Adaptation, Physiological
alpha -Melanophore-stimulating hormone
Animals
cellular activity
exocytosis protein
Humans
Immunohistochemistry
In Situ Hybridization
neuroendocrine cells
Neuropeptide Y - metabolism
NPY
Pituitary Gland - cytology
Pituitary Gland - metabolism
Suprachiasmatic Nucleus - anatomy & histology
Suprachiasmatic Nucleus - cytology
Suprachiasmatic Nucleus - physiology
Xenopus
Xenopus laevis
Xenopus laevis - anatomy & histology
Xenopus laevis - physiology
title Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20organization%20of%20the%20suprachiasmatic%20nucleus%20of%20Xenopus%20laevis%20in%20relation%20to%20background%20adaptation&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Kramer,%20Bianca%20M.R.&rft.date=2001-04-09&rft.volume=432&rft.issue=3&rft.spage=346&rft.epage=355&rft.pages=346-355&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.1107&rft_dat=%3Cproquest_cross%3E18013145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18013145&rft_id=info:pmid/11246212&rfr_iscdi=true