Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)
The immobilization of adhesion peptide sequences (such as RGD) at the surfaces of poly( α-hydroxyacid)s, including poly(lactic acid) (PLA), is complicated by an absence of functional groups to support covalent attachment. We demonstrate a method to overcome this problem, by attaching the peptide to...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2001-04, Vol.22 (8), p.865-872 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 872 |
---|---|
container_issue | 8 |
container_start_page | 865 |
container_title | Biomaterials |
container_volume | 22 |
creator | Quirk, Robin A. Chan, Weng C. Davies, Martyn C. Tendler, Saul J.B. Shakesheff, Kevin M. |
description | The immobilization of adhesion peptide sequences (such as RGD) at the surfaces of poly(
α-hydroxyacid)s, including poly(lactic acid) (PLA), is complicated by an absence of functional groups to support covalent attachment. We demonstrate a method to overcome this problem, by attaching the peptide to poly(
l-lysine) (PLL), which immobilizes the sequence through adsorption at the poly(
α-hydroxyacid) surface. When coated using a 0.01% w/v solution of PLL–GRGDS, bovine aortic endothelial cells seeded upon the modified PLA showed a marked increase in spreading over unmodified PLA. However, inhibition of the cell-spreading effect occurred when using higher concentrations of PLL–GRGDS, which we attribute to the PLL component. This inhibitory effect can be challenged by increasing the amount of GRGDS attached to each PLL molecule. Potentially, this is a flexible method of surface modification that can engineer many different types of tissue engineering scaffolds with a variety of biomolecules, thus allowing initial cell adhesion to be controlled. |
doi_str_mv | 10.1016/S0142-9612(00)00250-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76961761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961200002507</els_id><sourcerecordid>26912198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-e6459873eaedf898132db9245bce25bd6ea5996a429b929a5e3c4455eebbde163</originalsourceid><addsrcrecordid>eNqFkN9KwzAUh4Mobk4fQSkIsl1UkzRJmyuRqVMYKk6vQ5qcQqRdZ7IJu_MdfEOfxHYb83JX4YTvd_58CJ0SfEkwEVcTTBiNpSC0j_EAY8pxnO6hLsnSLOYS833U3SIddBTCB25qzOgh6hBCmZCcd9HTS10u-1EZl8vgpjD4_f4ZvY5uJ5EOkY5yV1eugrkzUVj4QhuIqtq6woGPitpHszZcatMC2jg7OEYHhS4DnGzeHnq_v3sbPsTj59Hj8GYcG5aJeQyCcZmlCWiwRSYzklCbS8p4boDy3ArQXEqhGZXNt9QcEsMY5wB5boGIpIcu1n1nvv5cQJirygUDZamnUC-CSkVzdirITpAKSSiRWQPyNWh8HYKHQs28q7RfKoJVa1ytjKtWp8JYrYyrtMmdbQYs8grsf2qjuAHON4AORpeF11PjwpbLpEh4O_56TUFj7avxq4JxMDVgnQczV7Z2Oxb5A_HJm_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26912198</pqid></control><display><type>article</type><title>Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Quirk, Robin A. ; Chan, Weng C. ; Davies, Martyn C. ; Tendler, Saul J.B. ; Shakesheff, Kevin M.</creator><creatorcontrib>Quirk, Robin A. ; Chan, Weng C. ; Davies, Martyn C. ; Tendler, Saul J.B. ; Shakesheff, Kevin M.</creatorcontrib><description>The immobilization of adhesion peptide sequences (such as RGD) at the surfaces of poly(
α-hydroxyacid)s, including poly(lactic acid) (PLA), is complicated by an absence of functional groups to support covalent attachment. We demonstrate a method to overcome this problem, by attaching the peptide to poly(
l-lysine) (PLL), which immobilizes the sequence through adsorption at the poly(
α-hydroxyacid) surface. When coated using a 0.01% w/v solution of PLL–GRGDS, bovine aortic endothelial cells seeded upon the modified PLA showed a marked increase in spreading over unmodified PLA. However, inhibition of the cell-spreading effect occurred when using higher concentrations of PLL–GRGDS, which we attribute to the PLL component. This inhibitory effect can be challenged by increasing the amount of GRGDS attached to each PLL molecule. Potentially, this is a flexible method of surface modification that can engineer many different types of tissue engineering scaffolds with a variety of biomolecules, thus allowing initial cell adhesion to be controlled.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(00)00250-7</identifier><identifier>PMID: 11246955</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biodegradable polymers ; Biological and medical sciences ; Biotechnology ; Cattle ; Cell Adhesion ; Cell Movement ; Cell spreading ; Cells, Cultured ; Endothelium, Vascular - cytology ; Fundamental and applied biological sciences. Psychology ; Immobilization of organelles and whole cells ; Immobilization techniques ; Lactic Acid - chemistry ; Materials Testing ; Methods. Procedures. Technologies ; Oligopeptides - chemistry ; Poly( l-lysine) ; Polyesters ; Polylysine - chemistry ; Polymers - chemistry ; RGD ; Surface adsorption ; Surface Properties ; Tissue engineering</subject><ispartof>Biomaterials, 2001-04, Vol.22 (8), p.865-872</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-e6459873eaedf898132db9245bce25bd6ea5996a429b929a5e3c4455eebbde163</citedby><cites>FETCH-LOGICAL-c486t-e6459873eaedf898132db9245bce25bd6ea5996a429b929a5e3c4455eebbde163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961200002507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=896358$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11246955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quirk, Robin A.</creatorcontrib><creatorcontrib>Chan, Weng C.</creatorcontrib><creatorcontrib>Davies, Martyn C.</creatorcontrib><creatorcontrib>Tendler, Saul J.B.</creatorcontrib><creatorcontrib>Shakesheff, Kevin M.</creatorcontrib><title>Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The immobilization of adhesion peptide sequences (such as RGD) at the surfaces of poly(
α-hydroxyacid)s, including poly(lactic acid) (PLA), is complicated by an absence of functional groups to support covalent attachment. We demonstrate a method to overcome this problem, by attaching the peptide to poly(
l-lysine) (PLL), which immobilizes the sequence through adsorption at the poly(
α-hydroxyacid) surface. When coated using a 0.01% w/v solution of PLL–GRGDS, bovine aortic endothelial cells seeded upon the modified PLA showed a marked increase in spreading over unmodified PLA. However, inhibition of the cell-spreading effect occurred when using higher concentrations of PLL–GRGDS, which we attribute to the PLL component. This inhibitory effect can be challenged by increasing the amount of GRGDS attached to each PLL molecule. Potentially, this is a flexible method of surface modification that can engineer many different types of tissue engineering scaffolds with a variety of biomolecules, thus allowing initial cell adhesion to be controlled.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biodegradable polymers</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cattle</subject><subject>Cell Adhesion</subject><subject>Cell Movement</subject><subject>Cell spreading</subject><subject>Cells, Cultured</subject><subject>Endothelium, Vascular - cytology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Immobilization of organelles and whole cells</subject><subject>Immobilization techniques</subject><subject>Lactic Acid - chemistry</subject><subject>Materials Testing</subject><subject>Methods. Procedures. Technologies</subject><subject>Oligopeptides - chemistry</subject><subject>Poly( l-lysine)</subject><subject>Polyesters</subject><subject>Polylysine - chemistry</subject><subject>Polymers - chemistry</subject><subject>RGD</subject><subject>Surface adsorption</subject><subject>Surface Properties</subject><subject>Tissue engineering</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkN9KwzAUh4Mobk4fQSkIsl1UkzRJmyuRqVMYKk6vQ5qcQqRdZ7IJu_MdfEOfxHYb83JX4YTvd_58CJ0SfEkwEVcTTBiNpSC0j_EAY8pxnO6hLsnSLOYS833U3SIddBTCB25qzOgh6hBCmZCcd9HTS10u-1EZl8vgpjD4_f4ZvY5uJ5EOkY5yV1eugrkzUVj4QhuIqtq6woGPitpHszZcatMC2jg7OEYHhS4DnGzeHnq_v3sbPsTj59Hj8GYcG5aJeQyCcZmlCWiwRSYzklCbS8p4boDy3ArQXEqhGZXNt9QcEsMY5wB5boGIpIcu1n1nvv5cQJirygUDZamnUC-CSkVzdirITpAKSSiRWQPyNWh8HYKHQs28q7RfKoJVa1ytjKtWp8JYrYyrtMmdbQYs8grsf2qjuAHON4AORpeF11PjwpbLpEh4O_56TUFj7avxq4JxMDVgnQczV7Z2Oxb5A_HJm_8</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Quirk, Robin A.</creator><creator>Chan, Weng C.</creator><creator>Davies, Martyn C.</creator><creator>Tendler, Saul J.B.</creator><creator>Shakesheff, Kevin M.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20010401</creationdate><title>Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)</title><author>Quirk, Robin A. ; Chan, Weng C. ; Davies, Martyn C. ; Tendler, Saul J.B. ; Shakesheff, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-e6459873eaedf898132db9245bce25bd6ea5996a429b929a5e3c4455eebbde163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biodegradable polymers</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cattle</topic><topic>Cell Adhesion</topic><topic>Cell Movement</topic><topic>Cell spreading</topic><topic>Cells, Cultured</topic><topic>Endothelium, Vascular - cytology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Immobilization of organelles and whole cells</topic><topic>Immobilization techniques</topic><topic>Lactic Acid - chemistry</topic><topic>Materials Testing</topic><topic>Methods. Procedures. Technologies</topic><topic>Oligopeptides - chemistry</topic><topic>Poly( l-lysine)</topic><topic>Polyesters</topic><topic>Polylysine - chemistry</topic><topic>Polymers - chemistry</topic><topic>RGD</topic><topic>Surface adsorption</topic><topic>Surface Properties</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quirk, Robin A.</creatorcontrib><creatorcontrib>Chan, Weng C.</creatorcontrib><creatorcontrib>Davies, Martyn C.</creatorcontrib><creatorcontrib>Tendler, Saul J.B.</creatorcontrib><creatorcontrib>Shakesheff, Kevin M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quirk, Robin A.</au><au>Chan, Weng C.</au><au>Davies, Martyn C.</au><au>Tendler, Saul J.B.</au><au>Shakesheff, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>22</volume><issue>8</issue><spage>865</spage><epage>872</epage><pages>865-872</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The immobilization of adhesion peptide sequences (such as RGD) at the surfaces of poly(
α-hydroxyacid)s, including poly(lactic acid) (PLA), is complicated by an absence of functional groups to support covalent attachment. We demonstrate a method to overcome this problem, by attaching the peptide to poly(
l-lysine) (PLL), which immobilizes the sequence through adsorption at the poly(
α-hydroxyacid) surface. When coated using a 0.01% w/v solution of PLL–GRGDS, bovine aortic endothelial cells seeded upon the modified PLA showed a marked increase in spreading over unmodified PLA. However, inhibition of the cell-spreading effect occurred when using higher concentrations of PLL–GRGDS, which we attribute to the PLL component. This inhibitory effect can be challenged by increasing the amount of GRGDS attached to each PLL molecule. Potentially, this is a flexible method of surface modification that can engineer many different types of tissue engineering scaffolds with a variety of biomolecules, thus allowing initial cell adhesion to be controlled.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11246955</pmid><doi>10.1016/S0142-9612(00)00250-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2001-04, Vol.22 (8), p.865-872 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_76961761 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Biocompatible Materials - chemistry Biodegradable polymers Biological and medical sciences Biotechnology Cattle Cell Adhesion Cell Movement Cell spreading Cells, Cultured Endothelium, Vascular - cytology Fundamental and applied biological sciences. Psychology Immobilization of organelles and whole cells Immobilization techniques Lactic Acid - chemistry Materials Testing Methods. Procedures. Technologies Oligopeptides - chemistry Poly( l-lysine) Polyesters Polylysine - chemistry Polymers - chemistry RGD Surface adsorption Surface Properties Tissue engineering |
title | Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(%20l-lysine)%E2%80%93GRGDS%20as%20a%20biomimetic%20surface%20modifier%20for%20poly(lactic%20acid)&rft.jtitle=Biomaterials&rft.au=Quirk,%20Robin%20A.&rft.date=2001-04-01&rft.volume=22&rft.issue=8&rft.spage=865&rft.epage=872&rft.pages=865-872&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(00)00250-7&rft_dat=%3Cproquest_cross%3E26912198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26912198&rft_id=info:pmid/11246955&rft_els_id=S0142961200002507&rfr_iscdi=true |