Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)

The immobilization of adhesion peptide sequences (such as RGD) at the surfaces of poly( α-hydroxyacid)s, including poly(lactic acid) (PLA), is complicated by an absence of functional groups to support covalent attachment. We demonstrate a method to overcome this problem, by attaching the peptide to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2001-04, Vol.22 (8), p.865-872
Hauptverfasser: Quirk, Robin A., Chan, Weng C., Davies, Martyn C., Tendler, Saul J.B., Shakesheff, Kevin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 872
container_issue 8
container_start_page 865
container_title Biomaterials
container_volume 22
creator Quirk, Robin A.
Chan, Weng C.
Davies, Martyn C.
Tendler, Saul J.B.
Shakesheff, Kevin M.
description The immobilization of adhesion peptide sequences (such as RGD) at the surfaces of poly( α-hydroxyacid)s, including poly(lactic acid) (PLA), is complicated by an absence of functional groups to support covalent attachment. We demonstrate a method to overcome this problem, by attaching the peptide to poly( l-lysine) (PLL), which immobilizes the sequence through adsorption at the poly( α-hydroxyacid) surface. When coated using a 0.01% w/v solution of PLL–GRGDS, bovine aortic endothelial cells seeded upon the modified PLA showed a marked increase in spreading over unmodified PLA. However, inhibition of the cell-spreading effect occurred when using higher concentrations of PLL–GRGDS, which we attribute to the PLL component. This inhibitory effect can be challenged by increasing the amount of GRGDS attached to each PLL molecule. Potentially, this is a flexible method of surface modification that can engineer many different types of tissue engineering scaffolds with a variety of biomolecules, thus allowing initial cell adhesion to be controlled.
doi_str_mv 10.1016/S0142-9612(00)00250-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76961761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961200002507</els_id><sourcerecordid>26912198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-e6459873eaedf898132db9245bce25bd6ea5996a429b929a5e3c4455eebbde163</originalsourceid><addsrcrecordid>eNqFkN9KwzAUh4Mobk4fQSkIsl1UkzRJmyuRqVMYKk6vQ5qcQqRdZ7IJu_MdfEOfxHYb83JX4YTvd_58CJ0SfEkwEVcTTBiNpSC0j_EAY8pxnO6hLsnSLOYS833U3SIddBTCB25qzOgh6hBCmZCcd9HTS10u-1EZl8vgpjD4_f4ZvY5uJ5EOkY5yV1eugrkzUVj4QhuIqtq6woGPitpHszZcatMC2jg7OEYHhS4DnGzeHnq_v3sbPsTj59Hj8GYcG5aJeQyCcZmlCWiwRSYzklCbS8p4boDy3ArQXEqhGZXNt9QcEsMY5wB5boGIpIcu1n1nvv5cQJirygUDZamnUC-CSkVzdirITpAKSSiRWQPyNWh8HYKHQs28q7RfKoJVa1ytjKtWp8JYrYyrtMmdbQYs8grsf2qjuAHON4AORpeF11PjwpbLpEh4O_56TUFj7avxq4JxMDVgnQczV7Z2Oxb5A_HJm_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26912198</pqid></control><display><type>article</type><title>Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Quirk, Robin A. ; Chan, Weng C. ; Davies, Martyn C. ; Tendler, Saul J.B. ; Shakesheff, Kevin M.</creator><creatorcontrib>Quirk, Robin A. ; Chan, Weng C. ; Davies, Martyn C. ; Tendler, Saul J.B. ; Shakesheff, Kevin M.</creatorcontrib><description>The immobilization of adhesion peptide sequences (such as RGD) at the surfaces of poly( α-hydroxyacid)s, including poly(lactic acid) (PLA), is complicated by an absence of functional groups to support covalent attachment. We demonstrate a method to overcome this problem, by attaching the peptide to poly( l-lysine) (PLL), which immobilizes the sequence through adsorption at the poly( α-hydroxyacid) surface. When coated using a 0.01% w/v solution of PLL–GRGDS, bovine aortic endothelial cells seeded upon the modified PLA showed a marked increase in spreading over unmodified PLA. However, inhibition of the cell-spreading effect occurred when using higher concentrations of PLL–GRGDS, which we attribute to the PLL component. This inhibitory effect can be challenged by increasing the amount of GRGDS attached to each PLL molecule. Potentially, this is a flexible method of surface modification that can engineer many different types of tissue engineering scaffolds with a variety of biomolecules, thus allowing initial cell adhesion to be controlled.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(00)00250-7</identifier><identifier>PMID: 11246955</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biodegradable polymers ; Biological and medical sciences ; Biotechnology ; Cattle ; Cell Adhesion ; Cell Movement ; Cell spreading ; Cells, Cultured ; Endothelium, Vascular - cytology ; Fundamental and applied biological sciences. Psychology ; Immobilization of organelles and whole cells ; Immobilization techniques ; Lactic Acid - chemistry ; Materials Testing ; Methods. Procedures. Technologies ; Oligopeptides - chemistry ; Poly( l-lysine) ; Polyesters ; Polylysine - chemistry ; Polymers - chemistry ; RGD ; Surface adsorption ; Surface Properties ; Tissue engineering</subject><ispartof>Biomaterials, 2001-04, Vol.22 (8), p.865-872</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-e6459873eaedf898132db9245bce25bd6ea5996a429b929a5e3c4455eebbde163</citedby><cites>FETCH-LOGICAL-c486t-e6459873eaedf898132db9245bce25bd6ea5996a429b929a5e3c4455eebbde163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961200002507$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=896358$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11246955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quirk, Robin A.</creatorcontrib><creatorcontrib>Chan, Weng C.</creatorcontrib><creatorcontrib>Davies, Martyn C.</creatorcontrib><creatorcontrib>Tendler, Saul J.B.</creatorcontrib><creatorcontrib>Shakesheff, Kevin M.</creatorcontrib><title>Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The immobilization of adhesion peptide sequences (such as RGD) at the surfaces of poly( α-hydroxyacid)s, including poly(lactic acid) (PLA), is complicated by an absence of functional groups to support covalent attachment. We demonstrate a method to overcome this problem, by attaching the peptide to poly( l-lysine) (PLL), which immobilizes the sequence through adsorption at the poly( α-hydroxyacid) surface. When coated using a 0.01% w/v solution of PLL–GRGDS, bovine aortic endothelial cells seeded upon the modified PLA showed a marked increase in spreading over unmodified PLA. However, inhibition of the cell-spreading effect occurred when using higher concentrations of PLL–GRGDS, which we attribute to the PLL component. This inhibitory effect can be challenged by increasing the amount of GRGDS attached to each PLL molecule. Potentially, this is a flexible method of surface modification that can engineer many different types of tissue engineering scaffolds with a variety of biomolecules, thus allowing initial cell adhesion to be controlled.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biodegradable polymers</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cattle</subject><subject>Cell Adhesion</subject><subject>Cell Movement</subject><subject>Cell spreading</subject><subject>Cells, Cultured</subject><subject>Endothelium, Vascular - cytology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Immobilization of organelles and whole cells</subject><subject>Immobilization techniques</subject><subject>Lactic Acid - chemistry</subject><subject>Materials Testing</subject><subject>Methods. Procedures. Technologies</subject><subject>Oligopeptides - chemistry</subject><subject>Poly( l-lysine)</subject><subject>Polyesters</subject><subject>Polylysine - chemistry</subject><subject>Polymers - chemistry</subject><subject>RGD</subject><subject>Surface adsorption</subject><subject>Surface Properties</subject><subject>Tissue engineering</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkN9KwzAUh4Mobk4fQSkIsl1UkzRJmyuRqVMYKk6vQ5qcQqRdZ7IJu_MdfEOfxHYb83JX4YTvd_58CJ0SfEkwEVcTTBiNpSC0j_EAY8pxnO6hLsnSLOYS833U3SIddBTCB25qzOgh6hBCmZCcd9HTS10u-1EZl8vgpjD4_f4ZvY5uJ5EOkY5yV1eugrkzUVj4QhuIqtq6woGPitpHszZcatMC2jg7OEYHhS4DnGzeHnq_v3sbPsTj59Hj8GYcG5aJeQyCcZmlCWiwRSYzklCbS8p4boDy3ArQXEqhGZXNt9QcEsMY5wB5boGIpIcu1n1nvv5cQJirygUDZamnUC-CSkVzdirITpAKSSiRWQPyNWh8HYKHQs28q7RfKoJVa1ytjKtWp8JYrYyrtMmdbQYs8grsf2qjuAHON4AORpeF11PjwpbLpEh4O_56TUFj7avxq4JxMDVgnQczV7Z2Oxb5A_HJm_8</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Quirk, Robin A.</creator><creator>Chan, Weng C.</creator><creator>Davies, Martyn C.</creator><creator>Tendler, Saul J.B.</creator><creator>Shakesheff, Kevin M.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20010401</creationdate><title>Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)</title><author>Quirk, Robin A. ; Chan, Weng C. ; Davies, Martyn C. ; Tendler, Saul J.B. ; Shakesheff, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-e6459873eaedf898132db9245bce25bd6ea5996a429b929a5e3c4455eebbde163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biodegradable polymers</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cattle</topic><topic>Cell Adhesion</topic><topic>Cell Movement</topic><topic>Cell spreading</topic><topic>Cells, Cultured</topic><topic>Endothelium, Vascular - cytology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Immobilization of organelles and whole cells</topic><topic>Immobilization techniques</topic><topic>Lactic Acid - chemistry</topic><topic>Materials Testing</topic><topic>Methods. Procedures. Technologies</topic><topic>Oligopeptides - chemistry</topic><topic>Poly( l-lysine)</topic><topic>Polyesters</topic><topic>Polylysine - chemistry</topic><topic>Polymers - chemistry</topic><topic>RGD</topic><topic>Surface adsorption</topic><topic>Surface Properties</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quirk, Robin A.</creatorcontrib><creatorcontrib>Chan, Weng C.</creatorcontrib><creatorcontrib>Davies, Martyn C.</creatorcontrib><creatorcontrib>Tendler, Saul J.B.</creatorcontrib><creatorcontrib>Shakesheff, Kevin M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quirk, Robin A.</au><au>Chan, Weng C.</au><au>Davies, Martyn C.</au><au>Tendler, Saul J.B.</au><au>Shakesheff, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>22</volume><issue>8</issue><spage>865</spage><epage>872</epage><pages>865-872</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The immobilization of adhesion peptide sequences (such as RGD) at the surfaces of poly( α-hydroxyacid)s, including poly(lactic acid) (PLA), is complicated by an absence of functional groups to support covalent attachment. We demonstrate a method to overcome this problem, by attaching the peptide to poly( l-lysine) (PLL), which immobilizes the sequence through adsorption at the poly( α-hydroxyacid) surface. When coated using a 0.01% w/v solution of PLL–GRGDS, bovine aortic endothelial cells seeded upon the modified PLA showed a marked increase in spreading over unmodified PLA. However, inhibition of the cell-spreading effect occurred when using higher concentrations of PLL–GRGDS, which we attribute to the PLL component. This inhibitory effect can be challenged by increasing the amount of GRGDS attached to each PLL molecule. Potentially, this is a flexible method of surface modification that can engineer many different types of tissue engineering scaffolds with a variety of biomolecules, thus allowing initial cell adhesion to be controlled.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11246955</pmid><doi>10.1016/S0142-9612(00)00250-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2001-04, Vol.22 (8), p.865-872
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_76961761
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Biocompatible Materials - chemistry
Biodegradable polymers
Biological and medical sciences
Biotechnology
Cattle
Cell Adhesion
Cell Movement
Cell spreading
Cells, Cultured
Endothelium, Vascular - cytology
Fundamental and applied biological sciences. Psychology
Immobilization of organelles and whole cells
Immobilization techniques
Lactic Acid - chemistry
Materials Testing
Methods. Procedures. Technologies
Oligopeptides - chemistry
Poly( l-lysine)
Polyesters
Polylysine - chemistry
Polymers - chemistry
RGD
Surface adsorption
Surface Properties
Tissue engineering
title Poly( l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(%20l-lysine)%E2%80%93GRGDS%20as%20a%20biomimetic%20surface%20modifier%20for%20poly(lactic%20acid)&rft.jtitle=Biomaterials&rft.au=Quirk,%20Robin%20A.&rft.date=2001-04-01&rft.volume=22&rft.issue=8&rft.spage=865&rft.epage=872&rft.pages=865-872&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(00)00250-7&rft_dat=%3Cproquest_cross%3E26912198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26912198&rft_id=info:pmid/11246955&rft_els_id=S0142961200002507&rfr_iscdi=true