Flow Resistance of Expiratory Positive-Pressure Valve Systems
The flow-resistive characteristics of a variety of commercially available expiratory positive-pressure valve systems used to provide continuous positive airway pressure (CPAP) and positive end-expiratory pressure were evaluated. One flow-resistor and seven threshold-resistor expiratory pressure valv...
Gespeichert in:
Veröffentlicht in: | Chest 1986-08, Vol.90 (2), p.212-217 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 2 |
container_start_page | 212 |
container_title | Chest |
container_volume | 90 |
creator | Banner, Michael J. Lampotang, Samsun Boysen, Philip G. Hurd, Thomas E. Desautels, David A |
description | The flow-resistive characteristics of a variety of commercially available expiratory positive-pressure valve systems used to provide continuous positive airway pressure (CPAP) and positive end-expiratory pressure were evaluated. One flow-resistor and seven threshold-resistor expiratory pressure valve systems were set at 5, 10,15, 20, and 25 cm H2O of expiratory pressure, and sinusoidal exhaled flows peaking at 50, 100, and 200 L/min were directed through each valve at each level of expiratory pressure. The Siemens flow-resistor valve demonstrated the greatest deviation in pressure above set CPAP levels at peak flow rates of 100 and 200 L/min, which suggests high resistance to exhaled flow. The Vital Signs threshold-resistor valve demonstrated the least deviation in pressure from set CPAP levels at all rates of exhaled flow, which suggests low flow resistance. The Emerson and IMV Bird threshold-resistor systems resisted flow less than the BEAR-2 and the Puritan-Bennett MA-2 and 7200 inflatable-balloon threshold-resistor-like valve systems. These data suggest that threshold resistors may be classified as low-resistance or high-resistance types. Using only low-resistance threshold resistors for CPAP may minimize the incidence of barotrauma and other deleterious effects related to airway pressure. |
doi_str_mv | 10.1378/chest.90.2.212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76949907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012369216614848</els_id><sourcerecordid>76949907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-315be4ec1b5ee9392f04cb3cec9ec8d3be23181121d55c3b15e62b8376577dae3</originalsourceid><addsrcrecordid>eNp1kc9P2zAUx61pqOtg190m5TDtluAfcRIfOCAEbFIlEBtcLcd5WY2cuvglZf3vMWsFXDhZ1vv-eP6YkK-MFkzUzbFdAo6FogUvOOMfyJwpwXIhS_GRzCllPBeV4p_IZ8R7mu5MVTMyE5JLyss5Obnw4TG7AXQ4mpWFLPTZ-b-1i2YMcZtdB3Sj20B-HQFxipDdGb-B7PcWRxjwiBz0xiN82Z-H5Pbi_M_Zz3xxdfnr7HSR25LWYy6YbKEEy1oJoITiPS1tKyxYBbbpRAtcsIYxzjoprWiZhIq3jagrWdedAXFIfuxy1zE8TOnBenBowXuzgjChritVKkXrJCx2QhsDYoRer6MbTNxqRvUzL_2fl1ZUc514JcO3ffLUDtC9yPeA0vz7fm7QGt_HBMnhi6xpOGvK6rV36f4uH10EjYPxPoWKXeN9mOLK-De9zc4ACdvGQdRoHaQP6JLZjroL7r2VnwB2XpgF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76949907</pqid></control><display><type>article</type><title>Flow Resistance of Expiratory Positive-Pressure Valve Systems</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Banner, Michael J. ; Lampotang, Samsun ; Boysen, Philip G. ; Hurd, Thomas E. ; Desautels, David A</creator><creatorcontrib>Banner, Michael J. ; Lampotang, Samsun ; Boysen, Philip G. ; Hurd, Thomas E. ; Desautels, David A</creatorcontrib><description>The flow-resistive characteristics of a variety of commercially available expiratory positive-pressure valve systems used to provide continuous positive airway pressure (CPAP) and positive end-expiratory pressure were evaluated. One flow-resistor and seven threshold-resistor expiratory pressure valve systems were set at 5, 10,15, 20, and 25 cm H2O of expiratory pressure, and sinusoidal exhaled flows peaking at 50, 100, and 200 L/min were directed through each valve at each level of expiratory pressure. The Siemens flow-resistor valve demonstrated the greatest deviation in pressure above set CPAP levels at peak flow rates of 100 and 200 L/min, which suggests high resistance to exhaled flow. The Vital Signs threshold-resistor valve demonstrated the least deviation in pressure from set CPAP levels at all rates of exhaled flow, which suggests low flow resistance. The Emerson and IMV Bird threshold-resistor systems resisted flow less than the BEAR-2 and the Puritan-Bennett MA-2 and 7200 inflatable-balloon threshold-resistor-like valve systems. These data suggest that threshold resistors may be classified as low-resistance or high-resistance types. Using only low-resistance threshold resistors for CPAP may minimize the incidence of barotrauma and other deleterious effects related to airway pressure.</description><identifier>ISSN: 0012-3692</identifier><identifier>EISSN: 1931-3543</identifier><identifier>DOI: 10.1378/chest.90.2.212</identifier><identifier>PMID: 3525024</identifier><identifier>CODEN: CHETBF</identifier><language>eng</language><publisher>Northbrook, IL: Elsevier Inc</publisher><subject>Airway Resistance ; Anesthesia ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Anesthesia: equipment, devices ; Biological and medical sciences ; Humans ; Medical sciences ; Positive-Pressure Respiration - instrumentation ; Pressure ; Pulmonary Ventilation</subject><ispartof>Chest, 1986-08, Vol.90 (2), p.212-217</ispartof><rights>1986 The American College of Chest Physicians</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-315be4ec1b5ee9392f04cb3cec9ec8d3be23181121d55c3b15e62b8376577dae3</citedby><cites>FETCH-LOGICAL-c407t-315be4ec1b5ee9392f04cb3cec9ec8d3be23181121d55c3b15e62b8376577dae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8821846$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3525024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banner, Michael J.</creatorcontrib><creatorcontrib>Lampotang, Samsun</creatorcontrib><creatorcontrib>Boysen, Philip G.</creatorcontrib><creatorcontrib>Hurd, Thomas E.</creatorcontrib><creatorcontrib>Desautels, David A</creatorcontrib><title>Flow Resistance of Expiratory Positive-Pressure Valve Systems</title><title>Chest</title><addtitle>Chest</addtitle><description>The flow-resistive characteristics of a variety of commercially available expiratory positive-pressure valve systems used to provide continuous positive airway pressure (CPAP) and positive end-expiratory pressure were evaluated. One flow-resistor and seven threshold-resistor expiratory pressure valve systems were set at 5, 10,15, 20, and 25 cm H2O of expiratory pressure, and sinusoidal exhaled flows peaking at 50, 100, and 200 L/min were directed through each valve at each level of expiratory pressure. The Siemens flow-resistor valve demonstrated the greatest deviation in pressure above set CPAP levels at peak flow rates of 100 and 200 L/min, which suggests high resistance to exhaled flow. The Vital Signs threshold-resistor valve demonstrated the least deviation in pressure from set CPAP levels at all rates of exhaled flow, which suggests low flow resistance. The Emerson and IMV Bird threshold-resistor systems resisted flow less than the BEAR-2 and the Puritan-Bennett MA-2 and 7200 inflatable-balloon threshold-resistor-like valve systems. These data suggest that threshold resistors may be classified as low-resistance or high-resistance types. Using only low-resistance threshold resistors for CPAP may minimize the incidence of barotrauma and other deleterious effects related to airway pressure.</description><subject>Airway Resistance</subject><subject>Anesthesia</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Anesthesia: equipment, devices</subject><subject>Biological and medical sciences</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Positive-Pressure Respiration - instrumentation</subject><subject>Pressure</subject><subject>Pulmonary Ventilation</subject><issn>0012-3692</issn><issn>1931-3543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9P2zAUx61pqOtg190m5TDtluAfcRIfOCAEbFIlEBtcLcd5WY2cuvglZf3vMWsFXDhZ1vv-eP6YkK-MFkzUzbFdAo6FogUvOOMfyJwpwXIhS_GRzCllPBeV4p_IZ8R7mu5MVTMyE5JLyss5Obnw4TG7AXQ4mpWFLPTZ-b-1i2YMcZtdB3Sj20B-HQFxipDdGb-B7PcWRxjwiBz0xiN82Z-H5Pbi_M_Zz3xxdfnr7HSR25LWYy6YbKEEy1oJoITiPS1tKyxYBbbpRAtcsIYxzjoprWiZhIq3jagrWdedAXFIfuxy1zE8TOnBenBowXuzgjChritVKkXrJCx2QhsDYoRer6MbTNxqRvUzL_2fl1ZUc514JcO3ffLUDtC9yPeA0vz7fm7QGt_HBMnhi6xpOGvK6rV36f4uH10EjYPxPoWKXeN9mOLK-De9zc4ACdvGQdRoHaQP6JLZjroL7r2VnwB2XpgF</recordid><startdate>19860801</startdate><enddate>19860801</enddate><creator>Banner, Michael J.</creator><creator>Lampotang, Samsun</creator><creator>Boysen, Philip G.</creator><creator>Hurd, Thomas E.</creator><creator>Desautels, David A</creator><general>Elsevier Inc</general><general>American College of Chest Physicians</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19860801</creationdate><title>Flow Resistance of Expiratory Positive-Pressure Valve Systems</title><author>Banner, Michael J. ; Lampotang, Samsun ; Boysen, Philip G. ; Hurd, Thomas E. ; Desautels, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-315be4ec1b5ee9392f04cb3cec9ec8d3be23181121d55c3b15e62b8376577dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Airway Resistance</topic><topic>Anesthesia</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Anesthesia: equipment, devices</topic><topic>Biological and medical sciences</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Positive-Pressure Respiration - instrumentation</topic><topic>Pressure</topic><topic>Pulmonary Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banner, Michael J.</creatorcontrib><creatorcontrib>Lampotang, Samsun</creatorcontrib><creatorcontrib>Boysen, Philip G.</creatorcontrib><creatorcontrib>Hurd, Thomas E.</creatorcontrib><creatorcontrib>Desautels, David A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chest</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banner, Michael J.</au><au>Lampotang, Samsun</au><au>Boysen, Philip G.</au><au>Hurd, Thomas E.</au><au>Desautels, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Resistance of Expiratory Positive-Pressure Valve Systems</atitle><jtitle>Chest</jtitle><addtitle>Chest</addtitle><date>1986-08-01</date><risdate>1986</risdate><volume>90</volume><issue>2</issue><spage>212</spage><epage>217</epage><pages>212-217</pages><issn>0012-3692</issn><eissn>1931-3543</eissn><coden>CHETBF</coden><abstract>The flow-resistive characteristics of a variety of commercially available expiratory positive-pressure valve systems used to provide continuous positive airway pressure (CPAP) and positive end-expiratory pressure were evaluated. One flow-resistor and seven threshold-resistor expiratory pressure valve systems were set at 5, 10,15, 20, and 25 cm H2O of expiratory pressure, and sinusoidal exhaled flows peaking at 50, 100, and 200 L/min were directed through each valve at each level of expiratory pressure. The Siemens flow-resistor valve demonstrated the greatest deviation in pressure above set CPAP levels at peak flow rates of 100 and 200 L/min, which suggests high resistance to exhaled flow. The Vital Signs threshold-resistor valve demonstrated the least deviation in pressure from set CPAP levels at all rates of exhaled flow, which suggests low flow resistance. The Emerson and IMV Bird threshold-resistor systems resisted flow less than the BEAR-2 and the Puritan-Bennett MA-2 and 7200 inflatable-balloon threshold-resistor-like valve systems. These data suggest that threshold resistors may be classified as low-resistance or high-resistance types. Using only low-resistance threshold resistors for CPAP may minimize the incidence of barotrauma and other deleterious effects related to airway pressure.</abstract><cop>Northbrook, IL</cop><pub>Elsevier Inc</pub><pmid>3525024</pmid><doi>10.1378/chest.90.2.212</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-3692 |
ispartof | Chest, 1986-08, Vol.90 (2), p.212-217 |
issn | 0012-3692 1931-3543 |
language | eng |
recordid | cdi_proquest_miscellaneous_76949907 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Airway Resistance Anesthesia Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Anesthesia: equipment, devices Biological and medical sciences Humans Medical sciences Positive-Pressure Respiration - instrumentation Pressure Pulmonary Ventilation |
title | Flow Resistance of Expiratory Positive-Pressure Valve Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Resistance%20of%20Expiratory%20Positive-Pressure%20Valve%20Systems&rft.jtitle=Chest&rft.au=Banner,%20Michael%20J.&rft.date=1986-08-01&rft.volume=90&rft.issue=2&rft.spage=212&rft.epage=217&rft.pages=212-217&rft.issn=0012-3692&rft.eissn=1931-3543&rft.coden=CHETBF&rft_id=info:doi/10.1378/chest.90.2.212&rft_dat=%3Cproquest_cross%3E76949907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76949907&rft_id=info:pmid/3525024&rft_els_id=S0012369216614848&rfr_iscdi=true |