[32] Applying bifurcation theory to enzyme kinetics

Bifurcation theory is the mathematician's description of how a system changes as environmental parameters are changed. A bifurcation is a qualitative change such as a constant system suddenly oscillating as the temperature is gradually increased. This chapter discusses the Bifurcation theory an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in Enzymology 1994, Vol.240, p.781-816
1. Verfasser: Hocker, Craig G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue
container_start_page 781
container_title Methods in Enzymology
container_volume 240
creator Hocker, Craig G.
description Bifurcation theory is the mathematician's description of how a system changes as environmental parameters are changed. A bifurcation is a qualitative change such as a constant system suddenly oscillating as the temperature is gradually increased. This chapter discusses the Bifurcation theory and its application in enzyme kinetics. Bifurcation theory is a more systematic and general theory of nonlinear systems than the standard steady-state analysis of enzyme networks. Bifurcation theory distinguishes between local bifurcations that are analyzable in a neighborhood about a single point in state space and global bifurcations that are not. A global bifurcation usually requires additional information to what is computable by the local methods. The only global bifurcation which is discussed in this chapter is a homoclinic point. The main experimental feature of a homoclinic bifurcation is that—as a parameter is varied in a region where a stable limit cycle exists, the period will increase to infinity either exponentially or as the square root of the parameter.
doi_str_mv 10.1016/S0076-6879(94)40071-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_76945738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0076687994400717</els_id><sourcerecordid>76945738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-e1ef88d6164fc8bf8ef06be5818bc4dd247325c514cf519b8ef02f310dd4b76e3</originalsourceid><addsrcrecordid>eNo9kEtLw0AQxxcf1Fr7EQo5iR6iO9lnTlKKLyh4UE8iS7KZ6GpeZhMhfnpTWzwNw-8_w8yPkAXQC6AgLx8pVTKUWsVnMT_nYweh2iNTEEKFKtZ6n8xjpSlEoCPgoA_I9H_kiBx7_0FppHQMEzJROmJaqClhLyx6DZZNUwyuegtSl_etTTpXV0H3jnU7BF0dYPUzlBh8ugo7Z_0JOcyTwuN8V2fk-eb6aXUXrh9u71fLdWgZ8C5EwFzrTILkudVprjGnMkWhQaeWZ1nEFYuEFcBtLiBONzzKGdAs46mSyGbkdLu3aeuvHn1nSuctFkVSYd17o2TMhWJ6DC52wT4tMTNN68qkHczuy5FfbTmO1347bI23DiuLmWvRdiarnQFqNprNn2azcWZibv40G8V-AQVna5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76945738</pqid></control><display><type>article</type><title>[32] Applying bifurcation theory to enzyme kinetics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ScienceDirect eBooks</source><creator>Hocker, Craig G.</creator><creatorcontrib>Hocker, Craig G.</creatorcontrib><description>Bifurcation theory is the mathematician's description of how a system changes as environmental parameters are changed. A bifurcation is a qualitative change such as a constant system suddenly oscillating as the temperature is gradually increased. This chapter discusses the Bifurcation theory and its application in enzyme kinetics. Bifurcation theory is a more systematic and general theory of nonlinear systems than the standard steady-state analysis of enzyme networks. Bifurcation theory distinguishes between local bifurcations that are analyzable in a neighborhood about a single point in state space and global bifurcations that are not. A global bifurcation usually requires additional information to what is computable by the local methods. The only global bifurcation which is discussed in this chapter is a homoclinic point. The main experimental feature of a homoclinic bifurcation is that—as a parameter is varied in a region where a stable limit cycle exists, the period will increase to infinity either exponentially or as the square root of the parameter.</description><identifier>ISSN: 0076-6879</identifier><identifier>ISBN: 9780121821418</identifier><identifier>ISBN: 0121821412</identifier><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/S0076-6879(94)40071-7</identifier><identifier>PMID: 7823857</identifier><language>eng</language><publisher>United States: Elsevier Science &amp; Technology</publisher><subject>Adenosine Triphosphate - metabolism ; Adenylate Kinase - metabolism ; Animals ; Catalysis ; Computer Simulation ; Enzymes - metabolism ; Kinetics ; Mathematics ; Models, Theoretical ; Muscles - enzymology ; Phosphofructokinase-1 - metabolism ; Time Factors</subject><ispartof>Methods in Enzymology, 1994, Vol.240, p.781-816</ispartof><rights>1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-e1ef88d6164fc8bf8ef06be5818bc4dd247325c514cf519b8ef02f310dd4b76e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0076687994400717$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,779,780,784,793,3459,3550,4024,11288,27923,27924,27925,45810,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7823857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hocker, Craig G.</creatorcontrib><title>[32] Applying bifurcation theory to enzyme kinetics</title><title>Methods in Enzymology</title><addtitle>Methods Enzymol</addtitle><description>Bifurcation theory is the mathematician's description of how a system changes as environmental parameters are changed. A bifurcation is a qualitative change such as a constant system suddenly oscillating as the temperature is gradually increased. This chapter discusses the Bifurcation theory and its application in enzyme kinetics. Bifurcation theory is a more systematic and general theory of nonlinear systems than the standard steady-state analysis of enzyme networks. Bifurcation theory distinguishes between local bifurcations that are analyzable in a neighborhood about a single point in state space and global bifurcations that are not. A global bifurcation usually requires additional information to what is computable by the local methods. The only global bifurcation which is discussed in this chapter is a homoclinic point. The main experimental feature of a homoclinic bifurcation is that—as a parameter is varied in a region where a stable limit cycle exists, the period will increase to infinity either exponentially or as the square root of the parameter.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenylate Kinase - metabolism</subject><subject>Animals</subject><subject>Catalysis</subject><subject>Computer Simulation</subject><subject>Enzymes - metabolism</subject><subject>Kinetics</subject><subject>Mathematics</subject><subject>Models, Theoretical</subject><subject>Muscles - enzymology</subject><subject>Phosphofructokinase-1 - metabolism</subject><subject>Time Factors</subject><issn>0076-6879</issn><issn>1557-7988</issn><isbn>9780121821418</isbn><isbn>0121821412</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtLw0AQxxcf1Fr7EQo5iR6iO9lnTlKKLyh4UE8iS7KZ6GpeZhMhfnpTWzwNw-8_w8yPkAXQC6AgLx8pVTKUWsVnMT_nYweh2iNTEEKFKtZ6n8xjpSlEoCPgoA_I9H_kiBx7_0FppHQMEzJROmJaqClhLyx6DZZNUwyuegtSl_etTTpXV0H3jnU7BF0dYPUzlBh8ugo7Z_0JOcyTwuN8V2fk-eb6aXUXrh9u71fLdWgZ8C5EwFzrTILkudVprjGnMkWhQaeWZ1nEFYuEFcBtLiBONzzKGdAs46mSyGbkdLu3aeuvHn1nSuctFkVSYd17o2TMhWJ6DC52wT4tMTNN68qkHczuy5FfbTmO1347bI23DiuLmWvRdiarnQFqNprNn2azcWZibv40G8V-AQVna5w</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Hocker, Craig G.</creator><general>Elsevier Science &amp; Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>1994</creationdate><title>[32] Applying bifurcation theory to enzyme kinetics</title><author>Hocker, Craig G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-e1ef88d6164fc8bf8ef06be5818bc4dd247325c514cf519b8ef02f310dd4b76e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenylate Kinase - metabolism</topic><topic>Animals</topic><topic>Catalysis</topic><topic>Computer Simulation</topic><topic>Enzymes - metabolism</topic><topic>Kinetics</topic><topic>Mathematics</topic><topic>Models, Theoretical</topic><topic>Muscles - enzymology</topic><topic>Phosphofructokinase-1 - metabolism</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hocker, Craig G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Methods in Enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hocker, Craig G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[32] Applying bifurcation theory to enzyme kinetics</atitle><jtitle>Methods in Enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>1994</date><risdate>1994</risdate><volume>240</volume><spage>781</spage><epage>816</epage><pages>781-816</pages><issn>0076-6879</issn><eissn>1557-7988</eissn><isbn>9780121821418</isbn><isbn>0121821412</isbn><abstract>Bifurcation theory is the mathematician's description of how a system changes as environmental parameters are changed. A bifurcation is a qualitative change such as a constant system suddenly oscillating as the temperature is gradually increased. This chapter discusses the Bifurcation theory and its application in enzyme kinetics. Bifurcation theory is a more systematic and general theory of nonlinear systems than the standard steady-state analysis of enzyme networks. Bifurcation theory distinguishes between local bifurcations that are analyzable in a neighborhood about a single point in state space and global bifurcations that are not. A global bifurcation usually requires additional information to what is computable by the local methods. The only global bifurcation which is discussed in this chapter is a homoclinic point. The main experimental feature of a homoclinic bifurcation is that—as a parameter is varied in a region where a stable limit cycle exists, the period will increase to infinity either exponentially or as the square root of the parameter.</abstract><cop>United States</cop><pub>Elsevier Science &amp; Technology</pub><pmid>7823857</pmid><doi>10.1016/S0076-6879(94)40071-7</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0076-6879
ispartof Methods in Enzymology, 1994, Vol.240, p.781-816
issn 0076-6879
1557-7988
language eng
recordid cdi_proquest_miscellaneous_76945738
source MEDLINE; Elsevier ScienceDirect Journals Complete; ScienceDirect eBooks
subjects Adenosine Triphosphate - metabolism
Adenylate Kinase - metabolism
Animals
Catalysis
Computer Simulation
Enzymes - metabolism
Kinetics
Mathematics
Models, Theoretical
Muscles - enzymology
Phosphofructokinase-1 - metabolism
Time Factors
title [32] Applying bifurcation theory to enzyme kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5B32%5D%20Applying%20bifurcation%20theory%20to%20enzyme%20kinetics&rft.jtitle=Methods%20in%20Enzymology&rft.au=Hocker,%20Craig%20G.&rft.date=1994&rft.volume=240&rft.spage=781&rft.epage=816&rft.pages=781-816&rft.issn=0076-6879&rft.eissn=1557-7988&rft.isbn=9780121821418&rft.isbn_list=0121821412&rft_id=info:doi/10.1016/S0076-6879(94)40071-7&rft_dat=%3Cproquest_pubme%3E76945738%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76945738&rft_id=info:pmid/7823857&rft_els_id=S0076687994400717&rfr_iscdi=true