A guanine nucleotide regulatory protein controls polyphosphoinositide metabolism, Ca2+ mobilization, and cellular responses to chemoattractants in human monocytes
Previous studies demonstrated that oligopeptide chemoattractant receptors on PMN and macrophages exist in high and low affinity states which are interconvertible by guanosine di- and triphosphates. These observations suggest that guanine nucleotide regulatory (N) proteins play a role in phagocyte ac...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 1986-07, Vol.137 (1), p.271-275 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies demonstrated that oligopeptide chemoattractant receptors on PMN and macrophages exist in high and low affinity states which are interconvertible by guanosine di- and triphosphates. These observations suggest that guanine nucleotide regulatory (N) proteins play a role in phagocyte activation by chemotactic factors. The data presented here indicate that chemotactic factor receptors on monocytes utilize an N protein to activate phospholipase C and subsequent biologic responses by the cells. This conclusion is based on the findings that inactivation of an N protein of 41,000 m.w. by Bordetella pertussis toxin (PT) treatment abolishes monocyte responsiveness to chemoattractants but not to lectins, PMA, or the Ca2+ ionophore A23187. Treatment with PT inhibited IP3 production, Ca2+ mobilization, and cellular activation as assessed by chemotaxis and changes in forward light scattering in response to the chemoattractants by at least 80%. Therefore, a PT-sensitive N protein plays an important role in the activation of monocytes by chemoattractants. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.137.1.271 |