Phase plane modeling of leg motion
Phase plane analysis of dynamical systems, in which variables are plotted against their time derivatives, has been recently emphasized as a general method for reconstructing system dynamics from data. The purpose of this experiment was to develop a model of leg movement in a stepping task using the...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 1986-01, Vol.53 (5), p.273-284 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | 5 |
container_start_page | 273 |
container_title | Biological cybernetics |
container_volume | 53 |
creator | BEUTER, A FLASHNER, H ARABYAN, A |
description | Phase plane analysis of dynamical systems, in which variables are plotted against their time derivatives, has been recently emphasized as a general method for reconstructing system dynamics from data. The purpose of this experiment was to develop a model of leg movement in a stepping task using the phase plane approach. In this model, the leg is represented as a three-body linkage and the motion of the leg is assumed to be planar with four degrees of freedom. Experimental data was collected on one subject stepping six times, using a two dimensional videomotion analysis system with reflective markers placed on the lower limb joints. A computer program able to solve the equations of motion and compute the state of the system for a given task was implemented. This computer program was written to generate the motion of the leg for a given task using inverse kinematics and a preplanned foot path. Foot trajectories with cycloidal, constant acceleration/deceleration and sinusoidal velocity profiles were studied. From the results, an attempt was made to identify the variables which are measured and to determine the motion characteristics during stepping. The preliminary results support the concept of a hierarchical control structure with open-loop control during normal operation. During routine activity there is no direct intervention of the Central Nervous System (CNS). The results support the existence of preprogramming and provide a starting point for the study of the development of control in multiarticulate movements. |
doi_str_mv | 10.1007/BF00336561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76797051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76797051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d43c2e7050a455deb27a355c80fce24735bd814804f7ff02a92a9c78db968c8d3</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRaq1u3AtBxIUQvfPKTJa1WBUKutB1mMyjRvJyJln4753SUOHC4XI-DoeD0CWGewwgHh7XAJRmPMNHaI4ZJSkIAcdoDpRBignAKToL4RsAcsLzGZrRLBcM8Bxdv3-pYJO-Vq1Nms7Yumq3SeeS2m7jP1Rde45OnKqDvZh0gT7XTx-rl3Tz9vy6Wm5STTEeUsOoJlYAB8U4N7YkQlHOtQSnLWGC8tJIzCQwJ5wDovJ4WkhT5pnU0tAFut3n9r77GW0YiqYK2ta7at0YCpGJPMbjCN7tQe27ELx1Re-rRvnfAkOxG6T4HyTCV1PqWDbWHNBpgejfTL4KWtXOq1ZX4YDJ2BsTSv8Ac85krg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76797051</pqid></control><display><type>article</type><title>Phase plane modeling of leg motion</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>BEUTER, A ; FLASHNER, H ; ARABYAN, A</creator><creatorcontrib>BEUTER, A ; FLASHNER, H ; ARABYAN, A</creatorcontrib><description>Phase plane analysis of dynamical systems, in which variables are plotted against their time derivatives, has been recently emphasized as a general method for reconstructing system dynamics from data. The purpose of this experiment was to develop a model of leg movement in a stepping task using the phase plane approach. In this model, the leg is represented as a three-body linkage and the motion of the leg is assumed to be planar with four degrees of freedom. Experimental data was collected on one subject stepping six times, using a two dimensional videomotion analysis system with reflective markers placed on the lower limb joints. A computer program able to solve the equations of motion and compute the state of the system for a given task was implemented. This computer program was written to generate the motion of the leg for a given task using inverse kinematics and a preplanned foot path. Foot trajectories with cycloidal, constant acceleration/deceleration and sinusoidal velocity profiles were studied. From the results, an attempt was made to identify the variables which are measured and to determine the motion characteristics during stepping. The preliminary results support the concept of a hierarchical control structure with open-loop control during normal operation. During routine activity there is no direct intervention of the Central Nervous System (CNS). The results support the existence of preprogramming and provide a starting point for the study of the development of control in multiarticulate movements.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/BF00336561</identifier><identifier>PMID: 3697401</identifier><identifier>CODEN: BICYAF</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biological and medical sciences ; Foot - physiology ; Fundamental and applied biological sciences. Psychology ; Hip Joint - physiology ; Humans ; Leg - physiology ; Locomotion ; Mathematics ; Models, Biological ; Movement ; Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</subject><ispartof>Biological cybernetics, 1986-01, Vol.53 (5), p.273-284</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-d43c2e7050a455deb27a355c80fce24735bd814804f7ff02a92a9c78db968c8d3</citedby><cites>FETCH-LOGICAL-c311t-d43c2e7050a455deb27a355c80fce24735bd814804f7ff02a92a9c78db968c8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8735123$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3697401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BEUTER, A</creatorcontrib><creatorcontrib>FLASHNER, H</creatorcontrib><creatorcontrib>ARABYAN, A</creatorcontrib><title>Phase plane modeling of leg motion</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><description>Phase plane analysis of dynamical systems, in which variables are plotted against their time derivatives, has been recently emphasized as a general method for reconstructing system dynamics from data. The purpose of this experiment was to develop a model of leg movement in a stepping task using the phase plane approach. In this model, the leg is represented as a three-body linkage and the motion of the leg is assumed to be planar with four degrees of freedom. Experimental data was collected on one subject stepping six times, using a two dimensional videomotion analysis system with reflective markers placed on the lower limb joints. A computer program able to solve the equations of motion and compute the state of the system for a given task was implemented. This computer program was written to generate the motion of the leg for a given task using inverse kinematics and a preplanned foot path. Foot trajectories with cycloidal, constant acceleration/deceleration and sinusoidal velocity profiles were studied. From the results, an attempt was made to identify the variables which are measured and to determine the motion characteristics during stepping. The preliminary results support the concept of a hierarchical control structure with open-loop control during normal operation. During routine activity there is no direct intervention of the Central Nervous System (CNS). The results support the existence of preprogramming and provide a starting point for the study of the development of control in multiarticulate movements.</description><subject>Biological and medical sciences</subject><subject>Foot - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hip Joint - physiology</subject><subject>Humans</subject><subject>Leg - physiology</subject><subject>Locomotion</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Movement</subject><subject>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtLw0AUhQdRaq1u3AtBxIUQvfPKTJa1WBUKutB1mMyjRvJyJln4753SUOHC4XI-DoeD0CWGewwgHh7XAJRmPMNHaI4ZJSkIAcdoDpRBignAKToL4RsAcsLzGZrRLBcM8Bxdv3-pYJO-Vq1Nms7Yumq3SeeS2m7jP1Rde45OnKqDvZh0gT7XTx-rl3Tz9vy6Wm5STTEeUsOoJlYAB8U4N7YkQlHOtQSnLWGC8tJIzCQwJ5wDovJ4WkhT5pnU0tAFut3n9r77GW0YiqYK2ta7at0YCpGJPMbjCN7tQe27ELx1Re-rRvnfAkOxG6T4HyTCV1PqWDbWHNBpgejfTL4KWtXOq1ZX4YDJ2BsTSv8Ac85krg</recordid><startdate>19860101</startdate><enddate>19860101</enddate><creator>BEUTER, A</creator><creator>FLASHNER, H</creator><creator>ARABYAN, A</creator><general>Springer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19860101</creationdate><title>Phase plane modeling of leg motion</title><author>BEUTER, A ; FLASHNER, H ; ARABYAN, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d43c2e7050a455deb27a355c80fce24735bd814804f7ff02a92a9c78db968c8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Biological and medical sciences</topic><topic>Foot - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hip Joint - physiology</topic><topic>Humans</topic><topic>Leg - physiology</topic><topic>Locomotion</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Movement</topic><topic>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BEUTER, A</creatorcontrib><creatorcontrib>FLASHNER, H</creatorcontrib><creatorcontrib>ARABYAN, A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BEUTER, A</au><au>FLASHNER, H</au><au>ARABYAN, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase plane modeling of leg motion</atitle><jtitle>Biological cybernetics</jtitle><addtitle>Biol Cybern</addtitle><date>1986-01-01</date><risdate>1986</risdate><volume>53</volume><issue>5</issue><spage>273</spage><epage>284</epage><pages>273-284</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><coden>BICYAF</coden><abstract>Phase plane analysis of dynamical systems, in which variables are plotted against their time derivatives, has been recently emphasized as a general method for reconstructing system dynamics from data. The purpose of this experiment was to develop a model of leg movement in a stepping task using the phase plane approach. In this model, the leg is represented as a three-body linkage and the motion of the leg is assumed to be planar with four degrees of freedom. Experimental data was collected on one subject stepping six times, using a two dimensional videomotion analysis system with reflective markers placed on the lower limb joints. A computer program able to solve the equations of motion and compute the state of the system for a given task was implemented. This computer program was written to generate the motion of the leg for a given task using inverse kinematics and a preplanned foot path. Foot trajectories with cycloidal, constant acceleration/deceleration and sinusoidal velocity profiles were studied. From the results, an attempt was made to identify the variables which are measured and to determine the motion characteristics during stepping. The preliminary results support the concept of a hierarchical control structure with open-loop control during normal operation. During routine activity there is no direct intervention of the Central Nervous System (CNS). The results support the existence of preprogramming and provide a starting point for the study of the development of control in multiarticulate movements.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><pmid>3697401</pmid><doi>10.1007/BF00336561</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 1986-01, Vol.53 (5), p.273-284 |
issn | 0340-1200 1432-0770 |
language | eng |
recordid | cdi_proquest_miscellaneous_76797051 |
source | MEDLINE; SpringerLink Journals |
subjects | Biological and medical sciences Foot - physiology Fundamental and applied biological sciences. Psychology Hip Joint - physiology Humans Leg - physiology Locomotion Mathematics Models, Biological Movement Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports |
title | Phase plane modeling of leg motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20plane%20modeling%20of%20leg%20motion&rft.jtitle=Biological%20cybernetics&rft.au=BEUTER,%20A&rft.date=1986-01-01&rft.volume=53&rft.issue=5&rft.spage=273&rft.epage=284&rft.pages=273-284&rft.issn=0340-1200&rft.eissn=1432-0770&rft.coden=BICYAF&rft_id=info:doi/10.1007/BF00336561&rft_dat=%3Cproquest_cross%3E76797051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76797051&rft_id=info:pmid/3697401&rfr_iscdi=true |