Finding temporal patterns — A set-based approach

We created an inference engine and query language for expressing temporal patterns in data. The patterns are represented by using temporally-ordered sets of data objects. Patterns are elaborated by reference to new objects inferred from original data, and by interlocking temporal and other relations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 1994-06, Vol.6 (3), p.263-271
Hauptverfasser: Wade, Ted D., Byrns, Patricia J., Steiner, John F., Bondy, Jessica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 3
container_start_page 263
container_title Artificial intelligence in medicine
container_volume 6
creator Wade, Ted D.
Byrns, Patricia J.
Steiner, John F.
Bondy, Jessica
description We created an inference engine and query language for expressing temporal patterns in data. The patterns are represented by using temporally-ordered sets of data objects. Patterns are elaborated by reference to new objects inferred from original data, and by interlocking temporal and other relationships among sets of these objects. We found the tools well-suited to define scenarios of events that are evidence of inappropriate use of prescription drugs, using Medicaid administrative data that describe medical events. The tools' usefulness in research might be considerably more general.
doi_str_mv 10.1016/0933-3657(94)90066-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76729532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0933365794900663</els_id><sourcerecordid>745657652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-a8a417a733c0f87e2726d70379b554ee07ea488f3a52889e3e1aef536da6e8e93</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRaq2-gUJW_iyiM3PndyOUYlUouNH1ME1uNJImcSYV3PkQPqFPYmpLl7q6i_Odc-Ej5JjRS0aZuqIWIAUl9bkVF5ZSpVLYIUNmNKTcKLpLhltknxzE-Eop1YKpARloy6nVdEj4tKzzsn5OOly0TfBV0vquw1DH5PvzKxknEbt07iPmiW_b0Pjs5ZDsFb6KeLS5I_I0vXmc3KWzh9v7yXiWZgCyS73xgmmvATJaGI1cc5VrCtrOpRSIVKMXxhTgJTfGIiDzWEhQuVdo0MKInK53-7dvS4ydW5Qxw6ryNTbL6LTS3ErgPXj2Nyhkr0BJ_u-k1MAZKNODYg1moYkxYOHaUC58-HCMupV9t1LrVmqdFe7XvoO-drLZX84XmG9LG919fr3Osff2XmJwMSuxzjAvA2ady5vy7wc_nCGSRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>57321368</pqid></control><display><type>article</type><title>Finding temporal patterns — A set-based approach</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wade, Ted D. ; Byrns, Patricia J. ; Steiner, John F. ; Bondy, Jessica</creator><creatorcontrib>Wade, Ted D. ; Byrns, Patricia J. ; Steiner, John F. ; Bondy, Jessica</creatorcontrib><description>We created an inference engine and query language for expressing temporal patterns in data. The patterns are represented by using temporally-ordered sets of data objects. Patterns are elaborated by reference to new objects inferred from original data, and by interlocking temporal and other relationships among sets of these objects. We found the tools well-suited to define scenarios of events that are evidence of inappropriate use of prescription drugs, using Medicaid administrative data that describe medical events. The tools' usefulness in research might be considerably more general.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/0933-3657(94)90066-3</identifier><identifier>PMID: 7920970</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Artificial Intelligence ; Computer applications ; Database Management Systems ; Drug Prescriptions ; Drug treatment ; Expert Systems ; Humans ; Inference engine ; Information Systems ; Knowledge representation ; Medicaid ; Medicine ; Neural Networks (Computer) ; Pattern Recognition, Automated ; Programming Languages ; Prolog ; Records as Topic ; Set ; Software Design ; Temporal pattern ; Temporal patterns ; Time Factors</subject><ispartof>Artificial intelligence in medicine, 1994-06, Vol.6 (3), p.263-271</ispartof><rights>1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-a8a417a733c0f87e2726d70379b554ee07ea488f3a52889e3e1aef536da6e8e93</citedby><cites>FETCH-LOGICAL-c335t-a8a417a733c0f87e2726d70379b554ee07ea488f3a52889e3e1aef536da6e8e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0933-3657(94)90066-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7920970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wade, Ted D.</creatorcontrib><creatorcontrib>Byrns, Patricia J.</creatorcontrib><creatorcontrib>Steiner, John F.</creatorcontrib><creatorcontrib>Bondy, Jessica</creatorcontrib><title>Finding temporal patterns — A set-based approach</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>We created an inference engine and query language for expressing temporal patterns in data. The patterns are represented by using temporally-ordered sets of data objects. Patterns are elaborated by reference to new objects inferred from original data, and by interlocking temporal and other relationships among sets of these objects. We found the tools well-suited to define scenarios of events that are evidence of inappropriate use of prescription drugs, using Medicaid administrative data that describe medical events. The tools' usefulness in research might be considerably more general.</description><subject>Artificial Intelligence</subject><subject>Computer applications</subject><subject>Database Management Systems</subject><subject>Drug Prescriptions</subject><subject>Drug treatment</subject><subject>Expert Systems</subject><subject>Humans</subject><subject>Inference engine</subject><subject>Information Systems</subject><subject>Knowledge representation</subject><subject>Medicaid</subject><subject>Medicine</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated</subject><subject>Programming Languages</subject><subject>Prolog</subject><subject>Records as Topic</subject><subject>Set</subject><subject>Software Design</subject><subject>Temporal pattern</subject><subject>Temporal patterns</subject><subject>Time Factors</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1Kw0AUhQdRaq2-gUJW_iyiM3PndyOUYlUouNH1ME1uNJImcSYV3PkQPqFPYmpLl7q6i_Odc-Ej5JjRS0aZuqIWIAUl9bkVF5ZSpVLYIUNmNKTcKLpLhltknxzE-Eop1YKpARloy6nVdEj4tKzzsn5OOly0TfBV0vquw1DH5PvzKxknEbt07iPmiW_b0Pjs5ZDsFb6KeLS5I_I0vXmc3KWzh9v7yXiWZgCyS73xgmmvATJaGI1cc5VrCtrOpRSIVKMXxhTgJTfGIiDzWEhQuVdo0MKInK53-7dvS4ydW5Qxw6ryNTbL6LTS3ErgPXj2Nyhkr0BJ_u-k1MAZKNODYg1moYkxYOHaUC58-HCMupV9t1LrVmqdFe7XvoO-drLZX84XmG9LG919fr3Osff2XmJwMSuxzjAvA2ady5vy7wc_nCGSRg</recordid><startdate>199406</startdate><enddate>199406</enddate><creator>Wade, Ted D.</creator><creator>Byrns, Patricia J.</creator><creator>Steiner, John F.</creator><creator>Bondy, Jessica</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>199406</creationdate><title>Finding temporal patterns — A set-based approach</title><author>Wade, Ted D. ; Byrns, Patricia J. ; Steiner, John F. ; Bondy, Jessica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-a8a417a733c0f87e2726d70379b554ee07ea488f3a52889e3e1aef536da6e8e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Artificial Intelligence</topic><topic>Computer applications</topic><topic>Database Management Systems</topic><topic>Drug Prescriptions</topic><topic>Drug treatment</topic><topic>Expert Systems</topic><topic>Humans</topic><topic>Inference engine</topic><topic>Information Systems</topic><topic>Knowledge representation</topic><topic>Medicaid</topic><topic>Medicine</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated</topic><topic>Programming Languages</topic><topic>Prolog</topic><topic>Records as Topic</topic><topic>Set</topic><topic>Software Design</topic><topic>Temporal pattern</topic><topic>Temporal patterns</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wade, Ted D.</creatorcontrib><creatorcontrib>Byrns, Patricia J.</creatorcontrib><creatorcontrib>Steiner, John F.</creatorcontrib><creatorcontrib>Bondy, Jessica</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wade, Ted D.</au><au>Byrns, Patricia J.</au><au>Steiner, John F.</au><au>Bondy, Jessica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding temporal patterns — A set-based approach</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>1994-06</date><risdate>1994</risdate><volume>6</volume><issue>3</issue><spage>263</spage><epage>271</epage><pages>263-271</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>We created an inference engine and query language for expressing temporal patterns in data. The patterns are represented by using temporally-ordered sets of data objects. Patterns are elaborated by reference to new objects inferred from original data, and by interlocking temporal and other relationships among sets of these objects. We found the tools well-suited to define scenarios of events that are evidence of inappropriate use of prescription drugs, using Medicaid administrative data that describe medical events. The tools' usefulness in research might be considerably more general.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>7920970</pmid><doi>10.1016/0933-3657(94)90066-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 1994-06, Vol.6 (3), p.263-271
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_76729532
source MEDLINE; Elsevier ScienceDirect Journals
subjects Artificial Intelligence
Computer applications
Database Management Systems
Drug Prescriptions
Drug treatment
Expert Systems
Humans
Inference engine
Information Systems
Knowledge representation
Medicaid
Medicine
Neural Networks (Computer)
Pattern Recognition, Automated
Programming Languages
Prolog
Records as Topic
Set
Software Design
Temporal pattern
Temporal patterns
Time Factors
title Finding temporal patterns — A set-based approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20temporal%20patterns%20%E2%80%94%20A%20set-based%20approach&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Wade,%20Ted%20D.&rft.date=1994-06&rft.volume=6&rft.issue=3&rft.spage=263&rft.epage=271&rft.pages=263-271&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/0933-3657(94)90066-3&rft_dat=%3Cproquest_cross%3E745657652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=57321368&rft_id=info:pmid/7920970&rft_els_id=0933365794900663&rfr_iscdi=true