Superoxide and bone resorption
The reaction of superoxide with nitroblue tetrazolium produces an electron-dense diformazan precipitate which can be used to localize areas of superoxide production. Transmission electron microscopy was used to demonstrate that difomazan granules formed by the reaction of nitroblue tetrazolium with...
Gespeichert in:
Veröffentlicht in: | Bone (New York, N.Y.) N.Y.), 1994-07, Vol.15 (4), p.431-436 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | 4 |
container_start_page | 431 |
container_title | Bone (New York, N.Y.) |
container_volume | 15 |
creator | Key, L.L. Wolf, W.C. Gundberg, C.M. Ries, W.L. |
description | The reaction of superoxide with nitroblue tetrazolium produces an electron-dense diformazan precipitate which can be used to localize areas of superoxide production. Transmission electron microscopy was used to demonstrate that difomazan granules formed by the reaction of nitroblue tetrazolium with excess superoxide are electron dense, whereas monoformazan granules generated by hydrogen peroxide were not. On the basis of these observations, superoxide formed along the osteoclast-bone interface was localized by demonstrating the electron-dense diformazan granules between the osteoclastic membrane and the bone surface. The formation of this reaction product was inhibited by a superoxide scavenger, the deferoxamine mesylate-manganese complex (the “green” complex), confirming the specificity of the reaction product. The scavenger also inhibited bone resorption. High concentrations of superoxide generated in vitro at a neutral pH degraded osteocalcin into numerous peptide fragments, demonstrating the ability of superoxide to break peptide bonds. These studies localize superoxide production to the ruffled border space and suggest that superoxide generated at the osteoclast-bone interface is involved in bone matrix degradation. |
doi_str_mv | 10.1016/8756-3282(94)90821-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76728011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>8756328294908214</els_id><sourcerecordid>76728011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-9e9cf7e8562ab100856bcd90565d56632c8b302a3a9ee8ae2a54397a50a064aa3</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRaq2-gUoXIrqIzv2yEaR4g4ILdT1MJicwkiZxphF9exMbutTVOXC-_-fwIXRM8BXBRF5rJWTGqKYXhl8arCnJ-A6aEq1YRpVku2i6RfbRQUrvGGNmFJmgiTJECc2m6PSlayE2X6GAuauLed7UMI-QmtiuQ1Mfor3SVQmOxjlDb_d3r4vHbPn88LS4XWaec7nODBhfKtBCUpcTjPsl94XBQopCSMmo1znD1DFnALQD6gTvP3ECOyy5c2yGzje9bWw-OkhruwrJQ1W5GpouWSUV1ZiQf0EihcFKsR7kG9DHJqUIpW1jWLn4bQm2gz87yLGDHGu4_fVneR87Gfu7fAXFNjQK6-9n490l76oyutqHtMU4wZKSoeZmg0Ev7TNAtMkHqD0UIYJf26IJf__xA8y_iXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16590773</pqid></control><display><type>article</type><title>Superoxide and bone resorption</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Key, L.L. ; Wolf, W.C. ; Gundberg, C.M. ; Ries, W.L.</creator><creatorcontrib>Key, L.L. ; Wolf, W.C. ; Gundberg, C.M. ; Ries, W.L.</creatorcontrib><description>The reaction of superoxide with nitroblue tetrazolium produces an electron-dense diformazan precipitate which can be used to localize areas of superoxide production. Transmission electron microscopy was used to demonstrate that difomazan granules formed by the reaction of nitroblue tetrazolium with excess superoxide are electron dense, whereas monoformazan granules generated by hydrogen peroxide were not. On the basis of these observations, superoxide formed along the osteoclast-bone interface was localized by demonstrating the electron-dense diformazan granules between the osteoclastic membrane and the bone surface. The formation of this reaction product was inhibited by a superoxide scavenger, the deferoxamine mesylate-manganese complex (the “green” complex), confirming the specificity of the reaction product. The scavenger also inhibited bone resorption. High concentrations of superoxide generated in vitro at a neutral pH degraded osteocalcin into numerous peptide fragments, demonstrating the ability of superoxide to break peptide bonds. These studies localize superoxide production to the ruffled border space and suggest that superoxide generated at the osteoclast-bone interface is involved in bone matrix degradation.</description><identifier>ISSN: 8756-3282</identifier><identifier>EISSN: 1873-2763</identifier><identifier>DOI: 10.1016/8756-3282(94)90821-4</identifier><identifier>PMID: 7917583</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Animals ; Azo Compounds - metabolism ; Biological and medical sciences ; Bone resorption ; Bone Resorption - etiology ; Bone Resorption - physiopathology ; Deferoxamine - analogs & derivatives ; Deferoxamine - pharmacology ; Free Radical Scavengers - pharmacology ; Fundamental and applied biological sciences. Psychology ; Humans ; Hydrogen Peroxide ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Manganese - pharmacology ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Nitroblue Tetrazolium - metabolism ; Organometallic Compounds - pharmacology ; Osteocalcin - metabolism ; Osteoclast ; Osteoclasts - metabolism ; Parathyroid Hormone - pharmacology ; Skeleton and joints ; Superoxide ; Superoxides - metabolism ; Vertebrates: osteoarticular system, musculoskeletal system ; X-Ray Diffraction</subject><ispartof>Bone (New York, N.Y.), 1994-07, Vol.15 (4), p.431-436</ispartof><rights>1994</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-9e9cf7e8562ab100856bcd90565d56632c8b302a3a9ee8ae2a54397a50a064aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/8756-3282(94)90821-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4106214$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7917583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Key, L.L.</creatorcontrib><creatorcontrib>Wolf, W.C.</creatorcontrib><creatorcontrib>Gundberg, C.M.</creatorcontrib><creatorcontrib>Ries, W.L.</creatorcontrib><title>Superoxide and bone resorption</title><title>Bone (New York, N.Y.)</title><addtitle>Bone</addtitle><description>The reaction of superoxide with nitroblue tetrazolium produces an electron-dense diformazan precipitate which can be used to localize areas of superoxide production. Transmission electron microscopy was used to demonstrate that difomazan granules formed by the reaction of nitroblue tetrazolium with excess superoxide are electron dense, whereas monoformazan granules generated by hydrogen peroxide were not. On the basis of these observations, superoxide formed along the osteoclast-bone interface was localized by demonstrating the electron-dense diformazan granules between the osteoclastic membrane and the bone surface. The formation of this reaction product was inhibited by a superoxide scavenger, the deferoxamine mesylate-manganese complex (the “green” complex), confirming the specificity of the reaction product. The scavenger also inhibited bone resorption. High concentrations of superoxide generated in vitro at a neutral pH degraded osteocalcin into numerous peptide fragments, demonstrating the ability of superoxide to break peptide bonds. These studies localize superoxide production to the ruffled border space and suggest that superoxide generated at the osteoclast-bone interface is involved in bone matrix degradation.</description><subject>Animals</subject><subject>Azo Compounds - metabolism</subject><subject>Biological and medical sciences</subject><subject>Bone resorption</subject><subject>Bone Resorption - etiology</subject><subject>Bone Resorption - physiopathology</subject><subject>Deferoxamine - analogs & derivatives</subject><subject>Deferoxamine - pharmacology</subject><subject>Free Radical Scavengers - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Hydrogen Peroxide</subject><subject>Hydrogen-Ion Concentration</subject><subject>In Vitro Techniques</subject><subject>Manganese - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Electron</subject><subject>Nitroblue Tetrazolium - metabolism</subject><subject>Organometallic Compounds - pharmacology</subject><subject>Osteocalcin - metabolism</subject><subject>Osteoclast</subject><subject>Osteoclasts - metabolism</subject><subject>Parathyroid Hormone - pharmacology</subject><subject>Skeleton and joints</subject><subject>Superoxide</subject><subject>Superoxides - metabolism</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><subject>X-Ray Diffraction</subject><issn>8756-3282</issn><issn>1873-2763</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKw0AUhgdRaq2-gUoXIrqIzv2yEaR4g4ILdT1MJicwkiZxphF9exMbutTVOXC-_-fwIXRM8BXBRF5rJWTGqKYXhl8arCnJ-A6aEq1YRpVku2i6RfbRQUrvGGNmFJmgiTJECc2m6PSlayE2X6GAuauLed7UMI-QmtiuQ1Mfor3SVQmOxjlDb_d3r4vHbPn88LS4XWaec7nODBhfKtBCUpcTjPsl94XBQopCSMmo1znD1DFnALQD6gTvP3ECOyy5c2yGzje9bWw-OkhruwrJQ1W5GpouWSUV1ZiQf0EihcFKsR7kG9DHJqUIpW1jWLn4bQm2gz87yLGDHGu4_fVneR87Gfu7fAXFNjQK6-9n490l76oyutqHtMU4wZKSoeZmg0Ev7TNAtMkHqD0UIYJf26IJf__xA8y_iXg</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>Key, L.L.</creator><creator>Wolf, W.C.</creator><creator>Gundberg, C.M.</creator><creator>Ries, W.L.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope></search><sort><creationdate>19940701</creationdate><title>Superoxide and bone resorption</title><author>Key, L.L. ; Wolf, W.C. ; Gundberg, C.M. ; Ries, W.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-9e9cf7e8562ab100856bcd90565d56632c8b302a3a9ee8ae2a54397a50a064aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Azo Compounds - metabolism</topic><topic>Biological and medical sciences</topic><topic>Bone resorption</topic><topic>Bone Resorption - etiology</topic><topic>Bone Resorption - physiopathology</topic><topic>Deferoxamine - analogs & derivatives</topic><topic>Deferoxamine - pharmacology</topic><topic>Free Radical Scavengers - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Hydrogen Peroxide</topic><topic>Hydrogen-Ion Concentration</topic><topic>In Vitro Techniques</topic><topic>Manganese - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Electron</topic><topic>Nitroblue Tetrazolium - metabolism</topic><topic>Organometallic Compounds - pharmacology</topic><topic>Osteocalcin - metabolism</topic><topic>Osteoclast</topic><topic>Osteoclasts - metabolism</topic><topic>Parathyroid Hormone - pharmacology</topic><topic>Skeleton and joints</topic><topic>Superoxide</topic><topic>Superoxides - metabolism</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Key, L.L.</creatorcontrib><creatorcontrib>Wolf, W.C.</creatorcontrib><creatorcontrib>Gundberg, C.M.</creatorcontrib><creatorcontrib>Ries, W.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bone (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Key, L.L.</au><au>Wolf, W.C.</au><au>Gundberg, C.M.</au><au>Ries, W.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superoxide and bone resorption</atitle><jtitle>Bone (New York, N.Y.)</jtitle><addtitle>Bone</addtitle><date>1994-07-01</date><risdate>1994</risdate><volume>15</volume><issue>4</issue><spage>431</spage><epage>436</epage><pages>431-436</pages><issn>8756-3282</issn><eissn>1873-2763</eissn><abstract>The reaction of superoxide with nitroblue tetrazolium produces an electron-dense diformazan precipitate which can be used to localize areas of superoxide production. Transmission electron microscopy was used to demonstrate that difomazan granules formed by the reaction of nitroblue tetrazolium with excess superoxide are electron dense, whereas monoformazan granules generated by hydrogen peroxide were not. On the basis of these observations, superoxide formed along the osteoclast-bone interface was localized by demonstrating the electron-dense diformazan granules between the osteoclastic membrane and the bone surface. The formation of this reaction product was inhibited by a superoxide scavenger, the deferoxamine mesylate-manganese complex (the “green” complex), confirming the specificity of the reaction product. The scavenger also inhibited bone resorption. High concentrations of superoxide generated in vitro at a neutral pH degraded osteocalcin into numerous peptide fragments, demonstrating the ability of superoxide to break peptide bonds. These studies localize superoxide production to the ruffled border space and suggest that superoxide generated at the osteoclast-bone interface is involved in bone matrix degradation.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>7917583</pmid><doi>10.1016/8756-3282(94)90821-4</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-3282 |
ispartof | Bone (New York, N.Y.), 1994-07, Vol.15 (4), p.431-436 |
issn | 8756-3282 1873-2763 |
language | eng |
recordid | cdi_proquest_miscellaneous_76728011 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Azo Compounds - metabolism Biological and medical sciences Bone resorption Bone Resorption - etiology Bone Resorption - physiopathology Deferoxamine - analogs & derivatives Deferoxamine - pharmacology Free Radical Scavengers - pharmacology Fundamental and applied biological sciences. Psychology Humans Hydrogen Peroxide Hydrogen-Ion Concentration In Vitro Techniques Manganese - pharmacology Mice Mice, Inbred C57BL Microscopy, Electron Nitroblue Tetrazolium - metabolism Organometallic Compounds - pharmacology Osteocalcin - metabolism Osteoclast Osteoclasts - metabolism Parathyroid Hormone - pharmacology Skeleton and joints Superoxide Superoxides - metabolism Vertebrates: osteoarticular system, musculoskeletal system X-Ray Diffraction |
title | Superoxide and bone resorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superoxide%20and%20bone%20resorption&rft.jtitle=Bone%20(New%20York,%20N.Y.)&rft.au=Key,%20L.L.&rft.date=1994-07-01&rft.volume=15&rft.issue=4&rft.spage=431&rft.epage=436&rft.pages=431-436&rft.issn=8756-3282&rft.eissn=1873-2763&rft_id=info:doi/10.1016/8756-3282(94)90821-4&rft_dat=%3Cproquest_cross%3E76728011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16590773&rft_id=info:pmid/7917583&rft_els_id=8756328294908214&rfr_iscdi=true |