Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 1985-11, Vol.8 (8), p.563-570
Hauptverfasser: Wu, H. I., Spence, R. D., Sharpe, P. J., Goeschl, J. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 570
container_issue 8
container_start_page 563
container_title Plant, cell and environment
container_volume 8
creator Wu, H. I.
Spence, R. D.
Sharpe, P. J.
Goeschl, J. D.
description The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.
doi_str_mv 10.1111/j.1365-3040.1985.tb01694.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76721973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76721973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3353-de04ad29c9a4a472e322b77aac3cdad4038ec78b202efa26c0dbe3702b5deed93</originalsourceid><addsrcrecordid>eNqVkV2L1DAUhoMo7rj6D0SCiHet-Woz2QthGVZdWNALvQ6nSepmTD9MWnb7702ZOl4b8gEnzzl5zxuE3lJS0jw-HEvK66rgROSA2lfl1BBaK1E-PkG789VTtCNUkEJKRS_Qi5SOhOSAVM_RBaWVoEyqHVoOLgT8AHlzAdLkjZ-WK3xb4mtsop_879nhocXTvcPNHH79pXA32DnMCcM4xgHMPYbe5pUnhCX5hOfk-594HMLSuXhOG6PvjR-DSy_RsxZCcq-28xL9-HTz_fCluPv6-fZwfVcYziteWEcEWKaMAgFCMscZa6QEMNxYsILwvTNy3zDCXAusNsQ2jkvCmso6ZxW_RO9PdbPO3EyadOeTyV1D74Y5aVlLRpXkGbw6gSYOKUXX6iy2g7hoSvRqvD7q1V29uqtX4_VmvH7MyW-2V-amc_Zf6uZ0Bt5tACQDoY2QfUhnbl_nvxKriI8n7MEHt_yHAv3tcFPVa4HXpwI9JND9FJNmJOOUkZpS_gfiAKph</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76721973</pqid></control><display><type>article</type><title>Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles</title><source>MEDLINE</source><source>NASA Technical Reports Server</source><source>Wiley Online Library All Journals</source><creator>Wu, H. I. ; Spence, R. D. ; Sharpe, P. J. ; Goeschl, J. D.</creator><creatorcontrib>Wu, H. I. ; Spence, R. D. ; Sharpe, P. J. ; Goeschl, J. D.</creatorcontrib><description>The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/j.1365-3040.1985.tb01694.x</identifier><identifier>PMID: 11541279</identifier><identifier>CODEN: PLCEDV</identifier><language>eng</language><publisher>Legacy CDMS: Blackwell Publishing Ltd</publisher><subject>Biological and medical sciences ; Biological membranes ; Biological Transport - physiology ; Biophysical Phenomena ; Biophysics ; bulk elastic modulus ; Cell Membrane Permeability - physiology ; Cell Physiological Phenomena ; Cell Wall - chemistry ; Cell Wall - physiology ; Cell Wall - ultrastructure ; cell wall elasticity ; Elasticity ; Fundamental and applied biological sciences. Psychology ; Life Sciences (General) ; Mathematics ; Membrane physicochemistry ; Models, Biological ; Molecular biophysics ; Plant Cells ; Plant Physiological Phenomena ; Plants - chemistry ; Plants - ultrastructure ; polymer mechanics ; Polymers - chemistry ; pressure‐volume relations ; Space life sciences ; Stress, Mechanical</subject><ispartof>Plant, cell and environment, 1985-11, Vol.8 (8), p.563-570</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3353-de04ad29c9a4a472e322b77aac3cdad4038ec78b202efa26c0dbe3702b5deed93</citedby><cites>FETCH-LOGICAL-c3353-de04ad29c9a4a472e322b77aac3cdad4038ec78b202efa26c0dbe3702b5deed93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-3040.1985.tb01694.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-3040.1985.tb01694.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8614043$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11541279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, H. I.</creatorcontrib><creatorcontrib>Spence, R. D.</creatorcontrib><creatorcontrib>Sharpe, P. J.</creatorcontrib><creatorcontrib>Goeschl, J. D.</creatorcontrib><title>Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.</description><subject>Biological and medical sciences</subject><subject>Biological membranes</subject><subject>Biological Transport - physiology</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>bulk elastic modulus</subject><subject>Cell Membrane Permeability - physiology</subject><subject>Cell Physiological Phenomena</subject><subject>Cell Wall - chemistry</subject><subject>Cell Wall - physiology</subject><subject>Cell Wall - ultrastructure</subject><subject>cell wall elasticity</subject><subject>Elasticity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Life Sciences (General)</subject><subject>Mathematics</subject><subject>Membrane physicochemistry</subject><subject>Models, Biological</subject><subject>Molecular biophysics</subject><subject>Plant Cells</subject><subject>Plant Physiological Phenomena</subject><subject>Plants - chemistry</subject><subject>Plants - ultrastructure</subject><subject>polymer mechanics</subject><subject>Polymers - chemistry</subject><subject>pressure‐volume relations</subject><subject>Space life sciences</subject><subject>Stress, Mechanical</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>EIF</sourceid><recordid>eNqVkV2L1DAUhoMo7rj6D0SCiHet-Woz2QthGVZdWNALvQ6nSepmTD9MWnb7702ZOl4b8gEnzzl5zxuE3lJS0jw-HEvK66rgROSA2lfl1BBaK1E-PkG789VTtCNUkEJKRS_Qi5SOhOSAVM_RBaWVoEyqHVoOLgT8AHlzAdLkjZ-WK3xb4mtsop_879nhocXTvcPNHH79pXA32DnMCcM4xgHMPYbe5pUnhCX5hOfk-594HMLSuXhOG6PvjR-DSy_RsxZCcq-28xL9-HTz_fCluPv6-fZwfVcYziteWEcEWKaMAgFCMscZa6QEMNxYsILwvTNy3zDCXAusNsQ2jkvCmso6ZxW_RO9PdbPO3EyadOeTyV1D74Y5aVlLRpXkGbw6gSYOKUXX6iy2g7hoSvRqvD7q1V29uqtX4_VmvH7MyW-2V-amc_Zf6uZ0Bt5tACQDoY2QfUhnbl_nvxKriI8n7MEHt_yHAv3tcFPVa4HXpwI9JND9FJNmJOOUkZpS_gfiAKph</recordid><startdate>198511</startdate><enddate>198511</enddate><creator>Wu, H. I.</creator><creator>Spence, R. D.</creator><creator>Sharpe, P. J.</creator><creator>Goeschl, J. D.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198511</creationdate><title>Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles</title><author>Wu, H. I. ; Spence, R. D. ; Sharpe, P. J. ; Goeschl, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3353-de04ad29c9a4a472e322b77aac3cdad4038ec78b202efa26c0dbe3702b5deed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Biological and medical sciences</topic><topic>Biological membranes</topic><topic>Biological Transport - physiology</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>bulk elastic modulus</topic><topic>Cell Membrane Permeability - physiology</topic><topic>Cell Physiological Phenomena</topic><topic>Cell Wall - chemistry</topic><topic>Cell Wall - physiology</topic><topic>Cell Wall - ultrastructure</topic><topic>cell wall elasticity</topic><topic>Elasticity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Life Sciences (General)</topic><topic>Mathematics</topic><topic>Membrane physicochemistry</topic><topic>Models, Biological</topic><topic>Molecular biophysics</topic><topic>Plant Cells</topic><topic>Plant Physiological Phenomena</topic><topic>Plants - chemistry</topic><topic>Plants - ultrastructure</topic><topic>polymer mechanics</topic><topic>Polymers - chemistry</topic><topic>pressure‐volume relations</topic><topic>Space life sciences</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, H. I.</creatorcontrib><creatorcontrib>Spence, R. D.</creatorcontrib><creatorcontrib>Sharpe, P. J.</creatorcontrib><creatorcontrib>Goeschl, J. D.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, H. I.</au><au>Spence, R. D.</au><au>Sharpe, P. J.</au><au>Goeschl, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>1985-11</date><risdate>1985</risdate><volume>8</volume><issue>8</issue><spage>563</spage><epage>570</epage><pages>563-570</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><coden>PLCEDV</coden><abstract>The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.</abstract><cop>Legacy CDMS</cop><pub>Blackwell Publishing Ltd</pub><pmid>11541279</pmid><doi>10.1111/j.1365-3040.1985.tb01694.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 1985-11, Vol.8 (8), p.563-570
issn 0140-7791
1365-3040
language eng
recordid cdi_proquest_miscellaneous_76721973
source MEDLINE; NASA Technical Reports Server; Wiley Online Library All Journals
subjects Biological and medical sciences
Biological membranes
Biological Transport - physiology
Biophysical Phenomena
Biophysics
bulk elastic modulus
Cell Membrane Permeability - physiology
Cell Physiological Phenomena
Cell Wall - chemistry
Cell Wall - physiology
Cell Wall - ultrastructure
cell wall elasticity
Elasticity
Fundamental and applied biological sciences. Psychology
Life Sciences (General)
Mathematics
Membrane physicochemistry
Models, Biological
Molecular biophysics
Plant Cells
Plant Physiological Phenomena
Plants - chemistry
Plants - ultrastructure
polymer mechanics
Polymers - chemistry
pressure‐volume relations
Space life sciences
Stress, Mechanical
title Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20wall%20elasticity:%20I.%20A%20critique%20of%20the%20bulk%20elastic%20modulus%20approach%20and%20an%20analysis%20using%20polymer%20elastic%20principles&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Wu,%20H.%20I.&rft.date=1985-11&rft.volume=8&rft.issue=8&rft.spage=563&rft.epage=570&rft.pages=563-570&rft.issn=0140-7791&rft.eissn=1365-3040&rft.coden=PLCEDV&rft_id=info:doi/10.1111/j.1365-3040.1985.tb01694.x&rft_dat=%3Cproquest_cross%3E76721973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76721973&rft_id=info:pmid/11541279&rfr_iscdi=true