Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles
The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physi...
Gespeichert in:
Veröffentlicht in: | Plant, cell and environment cell and environment, 1985-11, Vol.8 (8), p.563-570 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 570 |
---|---|
container_issue | 8 |
container_start_page | 563 |
container_title | Plant, cell and environment |
container_volume | 8 |
creator | Wu, H. I. Spence, R. D. Sharpe, P. J. Goeschl, J. D. |
description | The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network. |
doi_str_mv | 10.1111/j.1365-3040.1985.tb01694.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76721973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76721973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3353-de04ad29c9a4a472e322b77aac3cdad4038ec78b202efa26c0dbe3702b5deed93</originalsourceid><addsrcrecordid>eNqVkV2L1DAUhoMo7rj6D0SCiHet-Woz2QthGVZdWNALvQ6nSepmTD9MWnb7702ZOl4b8gEnzzl5zxuE3lJS0jw-HEvK66rgROSA2lfl1BBaK1E-PkG789VTtCNUkEJKRS_Qi5SOhOSAVM_RBaWVoEyqHVoOLgT8AHlzAdLkjZ-WK3xb4mtsop_879nhocXTvcPNHH79pXA32DnMCcM4xgHMPYbe5pUnhCX5hOfk-594HMLSuXhOG6PvjR-DSy_RsxZCcq-28xL9-HTz_fCluPv6-fZwfVcYziteWEcEWKaMAgFCMscZa6QEMNxYsILwvTNy3zDCXAusNsQ2jkvCmso6ZxW_RO9PdbPO3EyadOeTyV1D74Y5aVlLRpXkGbw6gSYOKUXX6iy2g7hoSvRqvD7q1V29uqtX4_VmvH7MyW-2V-amc_Zf6uZ0Bt5tACQDoY2QfUhnbl_nvxKriI8n7MEHt_yHAv3tcFPVa4HXpwI9JND9FJNmJOOUkZpS_gfiAKph</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76721973</pqid></control><display><type>article</type><title>Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles</title><source>MEDLINE</source><source>NASA Technical Reports Server</source><source>Wiley Online Library All Journals</source><creator>Wu, H. I. ; Spence, R. D. ; Sharpe, P. J. ; Goeschl, J. D.</creator><creatorcontrib>Wu, H. I. ; Spence, R. D. ; Sharpe, P. J. ; Goeschl, J. D.</creatorcontrib><description>The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/j.1365-3040.1985.tb01694.x</identifier><identifier>PMID: 11541279</identifier><identifier>CODEN: PLCEDV</identifier><language>eng</language><publisher>Legacy CDMS: Blackwell Publishing Ltd</publisher><subject>Biological and medical sciences ; Biological membranes ; Biological Transport - physiology ; Biophysical Phenomena ; Biophysics ; bulk elastic modulus ; Cell Membrane Permeability - physiology ; Cell Physiological Phenomena ; Cell Wall - chemistry ; Cell Wall - physiology ; Cell Wall - ultrastructure ; cell wall elasticity ; Elasticity ; Fundamental and applied biological sciences. Psychology ; Life Sciences (General) ; Mathematics ; Membrane physicochemistry ; Models, Biological ; Molecular biophysics ; Plant Cells ; Plant Physiological Phenomena ; Plants - chemistry ; Plants - ultrastructure ; polymer mechanics ; Polymers - chemistry ; pressure‐volume relations ; Space life sciences ; Stress, Mechanical</subject><ispartof>Plant, cell and environment, 1985-11, Vol.8 (8), p.563-570</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3353-de04ad29c9a4a472e322b77aac3cdad4038ec78b202efa26c0dbe3702b5deed93</citedby><cites>FETCH-LOGICAL-c3353-de04ad29c9a4a472e322b77aac3cdad4038ec78b202efa26c0dbe3702b5deed93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-3040.1985.tb01694.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-3040.1985.tb01694.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8614043$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11541279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, H. I.</creatorcontrib><creatorcontrib>Spence, R. D.</creatorcontrib><creatorcontrib>Sharpe, P. J.</creatorcontrib><creatorcontrib>Goeschl, J. D.</creatorcontrib><title>Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.</description><subject>Biological and medical sciences</subject><subject>Biological membranes</subject><subject>Biological Transport - physiology</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>bulk elastic modulus</subject><subject>Cell Membrane Permeability - physiology</subject><subject>Cell Physiological Phenomena</subject><subject>Cell Wall - chemistry</subject><subject>Cell Wall - physiology</subject><subject>Cell Wall - ultrastructure</subject><subject>cell wall elasticity</subject><subject>Elasticity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Life Sciences (General)</subject><subject>Mathematics</subject><subject>Membrane physicochemistry</subject><subject>Models, Biological</subject><subject>Molecular biophysics</subject><subject>Plant Cells</subject><subject>Plant Physiological Phenomena</subject><subject>Plants - chemistry</subject><subject>Plants - ultrastructure</subject><subject>polymer mechanics</subject><subject>Polymers - chemistry</subject><subject>pressure‐volume relations</subject><subject>Space life sciences</subject><subject>Stress, Mechanical</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>EIF</sourceid><recordid>eNqVkV2L1DAUhoMo7rj6D0SCiHet-Woz2QthGVZdWNALvQ6nSepmTD9MWnb7702ZOl4b8gEnzzl5zxuE3lJS0jw-HEvK66rgROSA2lfl1BBaK1E-PkG789VTtCNUkEJKRS_Qi5SOhOSAVM_RBaWVoEyqHVoOLgT8AHlzAdLkjZ-WK3xb4mtsop_879nhocXTvcPNHH79pXA32DnMCcM4xgHMPYbe5pUnhCX5hOfk-594HMLSuXhOG6PvjR-DSy_RsxZCcq-28xL9-HTz_fCluPv6-fZwfVcYziteWEcEWKaMAgFCMscZa6QEMNxYsILwvTNy3zDCXAusNsQ2jkvCmso6ZxW_RO9PdbPO3EyadOeTyV1D74Y5aVlLRpXkGbw6gSYOKUXX6iy2g7hoSvRqvD7q1V29uqtX4_VmvH7MyW-2V-amc_Zf6uZ0Bt5tACQDoY2QfUhnbl_nvxKriI8n7MEHt_yHAv3tcFPVa4HXpwI9JND9FJNmJOOUkZpS_gfiAKph</recordid><startdate>198511</startdate><enddate>198511</enddate><creator>Wu, H. I.</creator><creator>Spence, R. D.</creator><creator>Sharpe, P. J.</creator><creator>Goeschl, J. D.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198511</creationdate><title>Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles</title><author>Wu, H. I. ; Spence, R. D. ; Sharpe, P. J. ; Goeschl, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3353-de04ad29c9a4a472e322b77aac3cdad4038ec78b202efa26c0dbe3702b5deed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Biological and medical sciences</topic><topic>Biological membranes</topic><topic>Biological Transport - physiology</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>bulk elastic modulus</topic><topic>Cell Membrane Permeability - physiology</topic><topic>Cell Physiological Phenomena</topic><topic>Cell Wall - chemistry</topic><topic>Cell Wall - physiology</topic><topic>Cell Wall - ultrastructure</topic><topic>cell wall elasticity</topic><topic>Elasticity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Life Sciences (General)</topic><topic>Mathematics</topic><topic>Membrane physicochemistry</topic><topic>Models, Biological</topic><topic>Molecular biophysics</topic><topic>Plant Cells</topic><topic>Plant Physiological Phenomena</topic><topic>Plants - chemistry</topic><topic>Plants - ultrastructure</topic><topic>polymer mechanics</topic><topic>Polymers - chemistry</topic><topic>pressure‐volume relations</topic><topic>Space life sciences</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, H. I.</creatorcontrib><creatorcontrib>Spence, R. D.</creatorcontrib><creatorcontrib>Sharpe, P. J.</creatorcontrib><creatorcontrib>Goeschl, J. D.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, H. I.</au><au>Spence, R. D.</au><au>Sharpe, P. J.</au><au>Goeschl, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>1985-11</date><risdate>1985</risdate><volume>8</volume><issue>8</issue><spage>563</spage><epage>570</epage><pages>563-570</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><coden>PLCEDV</coden><abstract>The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.</abstract><cop>Legacy CDMS</cop><pub>Blackwell Publishing Ltd</pub><pmid>11541279</pmid><doi>10.1111/j.1365-3040.1985.tb01694.x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7791 |
ispartof | Plant, cell and environment, 1985-11, Vol.8 (8), p.563-570 |
issn | 0140-7791 1365-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_76721973 |
source | MEDLINE; NASA Technical Reports Server; Wiley Online Library All Journals |
subjects | Biological and medical sciences Biological membranes Biological Transport - physiology Biophysical Phenomena Biophysics bulk elastic modulus Cell Membrane Permeability - physiology Cell Physiological Phenomena Cell Wall - chemistry Cell Wall - physiology Cell Wall - ultrastructure cell wall elasticity Elasticity Fundamental and applied biological sciences. Psychology Life Sciences (General) Mathematics Membrane physicochemistry Models, Biological Molecular biophysics Plant Cells Plant Physiological Phenomena Plants - chemistry Plants - ultrastructure polymer mechanics Polymers - chemistry pressure‐volume relations Space life sciences Stress, Mechanical |
title | Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20wall%20elasticity:%20I.%20A%20critique%20of%20the%20bulk%20elastic%20modulus%20approach%20and%20an%20analysis%20using%20polymer%20elastic%20principles&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Wu,%20H.%20I.&rft.date=1985-11&rft.volume=8&rft.issue=8&rft.spage=563&rft.epage=570&rft.pages=563-570&rft.issn=0140-7791&rft.eissn=1365-3040&rft.coden=PLCEDV&rft_id=info:doi/10.1111/j.1365-3040.1985.tb01694.x&rft_dat=%3Cproquest_cross%3E76721973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76721973&rft_id=info:pmid/11541279&rfr_iscdi=true |