Stimulation of interstitial collagenase in co-cultures of rat hepatocytes and sinusoidal cells
Although the fibrosis observed during chronic liver injury is the result of a complex process, the striking accumulation of collagen in end stage liver disease has provoked interest in the mechanisms that regulate both collagen production and degradation in the diseased liver. The present studies ha...
Gespeichert in:
Veröffentlicht in: | Gastroenterology (New York, N.Y. 1943) N.Y. 1943), 1986-04, Vol.90 (4), p.829-836 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 836 |
---|---|
container_issue | 4 |
container_start_page | 829 |
container_title | Gastroenterology (New York, N.Y. 1943) |
container_volume | 90 |
creator | Kashiwazaki, Kazuo Hibbs, Margaret S. Seyer, Jerome M. Mainardi, Carlo L. Kang, Andrew H. |
description | Although the fibrosis observed during chronic liver injury is the result of a complex process, the striking accumulation of collagen in end stage liver disease has provoked interest in the mechanisms that regulate both collagen production and degradation in the diseased liver. The present studies have examined the cell interactions that may be important in the regulation of collagen degradation. Although minimal amounts of interstitial collagenase activity were noted in cultures of normal hepatocytes and sinusoidal cells, the co-cultures of these cells in the presence of lipopolysaccharide showed a substantial increase in collagenase activity. When the hepatocytes were obtained from rats that had been treated with carbon tetrachloride in vivo, the enhanced activity seen in the co-cultures did not require the addition of lipopolysaccharide. Further characterization of this interaction suggested that the increase in collagenolytic activity was partially due to the elaboration of soluble factors by the hepatocyte, which stimulated collagenase production by the sinusoidal cell population. Elaboration of collagenase activity by the sinusoidal cells was inhibited by cycloheximide, suggesting that protein synthesis was required. The proteolytic activity was abrogated by inhibitors of metalloproteinases but not by serine or thiol proteinase inhibitors. The degradation products of type I collagen were typical of the expected products seen with vertebrate collagenases. Thus, it appears that the increased collagenolytic activity detected in this co-culture system is attributable to the production of interstitial collagenase by the sinusoidal cell population. Such cell-cell interactions may play an important role in the maintenance of normal connective tissue structure of the liver during disease processes. |
doi_str_mv | 10.1016/0016-5085(86)90858-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76713247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0016508586908589</els_id><sourcerecordid>76713247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-103aebdd5d9303043e4367fcc63c9666a4827c6e0382d39d65f57f7136baeaba3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi1UtGwLbwBSDhUqhxQ7ThznUglVQCtV4gBcsWbtSWvkjRePU2nfHodd7ZGLR_b_zWj8MfZW8GvBhfrIy1F3XHdXWn0YStX18IKtRdfoumTNGVufkFfsnOg353yQWqzYSnLeCd6u2a_v2W_nANnHqYpj5aeMibLPHkJlYwjwiBMQlqBcazuHPCekBU2QqyfcQY52n8sTTK4iP80UvVuaMQR6zV6OEAjfHOsF-_nl84_bu_rh29f7208PtZVc5FpwCbhxrnOD5JK3Elup-tFaJe2glIJWN71VyKVunByc6sauH3sh1QYQNiAv2PvD3F2Kf2akbLaelg1gwjiT6VWBm7YvYHsAbYpECUezS34LaW8EN4tWszgzizOjlfmn1Qyl7d1x_rzZojs1HT2W_PKYA1kIY4LJejphvVblP03Bbg4YFhfPHpMh63Gy6HxCm42L_v97_AWUVpSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76713247</pqid></control><display><type>article</type><title>Stimulation of interstitial collagenase in co-cultures of rat hepatocytes and sinusoidal cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Kashiwazaki, Kazuo ; Hibbs, Margaret S. ; Seyer, Jerome M. ; Mainardi, Carlo L. ; Kang, Andrew H.</creator><creatorcontrib>Kashiwazaki, Kazuo ; Hibbs, Margaret S. ; Seyer, Jerome M. ; Mainardi, Carlo L. ; Kang, Andrew H.</creatorcontrib><description>Although the fibrosis observed during chronic liver injury is the result of a complex process, the striking accumulation of collagen in end stage liver disease has provoked interest in the mechanisms that regulate both collagen production and degradation in the diseased liver. The present studies have examined the cell interactions that may be important in the regulation of collagen degradation. Although minimal amounts of interstitial collagenase activity were noted in cultures of normal hepatocytes and sinusoidal cells, the co-cultures of these cells in the presence of lipopolysaccharide showed a substantial increase in collagenase activity. When the hepatocytes were obtained from rats that had been treated with carbon tetrachloride in vivo, the enhanced activity seen in the co-cultures did not require the addition of lipopolysaccharide. Further characterization of this interaction suggested that the increase in collagenolytic activity was partially due to the elaboration of soluble factors by the hepatocyte, which stimulated collagenase production by the sinusoidal cell population. Elaboration of collagenase activity by the sinusoidal cells was inhibited by cycloheximide, suggesting that protein synthesis was required. The proteolytic activity was abrogated by inhibitors of metalloproteinases but not by serine or thiol proteinase inhibitors. The degradation products of type I collagen were typical of the expected products seen with vertebrate collagenases. Thus, it appears that the increased collagenolytic activity detected in this co-culture system is attributable to the production of interstitial collagenase by the sinusoidal cell population. Such cell-cell interactions may play an important role in the maintenance of normal connective tissue structure of the liver during disease processes.</description><identifier>ISSN: 0016-5085</identifier><identifier>EISSN: 1528-0012</identifier><identifier>DOI: 10.1016/0016-5085(86)90858-9</identifier><identifier>PMID: 3005104</identifier><identifier>CODEN: GASTAB</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Cell interactions, adhesion ; Cells, Cultured ; Fundamental and applied biological sciences. Psychology ; Kupffer Cells - metabolism ; Lipopolysaccharides - metabolism ; Liver - cytology ; Liver - metabolism ; Male ; Microbial Collagenase - antagonists & inhibitors ; Microbial Collagenase - metabolism ; Molecular and cellular biology ; Rats ; Rats, Inbred Strains</subject><ispartof>Gastroenterology (New York, N.Y. 1943), 1986-04, Vol.90 (4), p.829-836</ispartof><rights>1986</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-103aebdd5d9303043e4367fcc63c9666a4827c6e0382d39d65f57f7136baeaba3</citedby><cites>FETCH-LOGICAL-c301t-103aebdd5d9303043e4367fcc63c9666a4827c6e0382d39d65f57f7136baeaba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0016508586908589$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7863672$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3005104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kashiwazaki, Kazuo</creatorcontrib><creatorcontrib>Hibbs, Margaret S.</creatorcontrib><creatorcontrib>Seyer, Jerome M.</creatorcontrib><creatorcontrib>Mainardi, Carlo L.</creatorcontrib><creatorcontrib>Kang, Andrew H.</creatorcontrib><title>Stimulation of interstitial collagenase in co-cultures of rat hepatocytes and sinusoidal cells</title><title>Gastroenterology (New York, N.Y. 1943)</title><addtitle>Gastroenterology</addtitle><description>Although the fibrosis observed during chronic liver injury is the result of a complex process, the striking accumulation of collagen in end stage liver disease has provoked interest in the mechanisms that regulate both collagen production and degradation in the diseased liver. The present studies have examined the cell interactions that may be important in the regulation of collagen degradation. Although minimal amounts of interstitial collagenase activity were noted in cultures of normal hepatocytes and sinusoidal cells, the co-cultures of these cells in the presence of lipopolysaccharide showed a substantial increase in collagenase activity. When the hepatocytes were obtained from rats that had been treated with carbon tetrachloride in vivo, the enhanced activity seen in the co-cultures did not require the addition of lipopolysaccharide. Further characterization of this interaction suggested that the increase in collagenolytic activity was partially due to the elaboration of soluble factors by the hepatocyte, which stimulated collagenase production by the sinusoidal cell population. Elaboration of collagenase activity by the sinusoidal cells was inhibited by cycloheximide, suggesting that protein synthesis was required. The proteolytic activity was abrogated by inhibitors of metalloproteinases but not by serine or thiol proteinase inhibitors. The degradation products of type I collagen were typical of the expected products seen with vertebrate collagenases. Thus, it appears that the increased collagenolytic activity detected in this co-culture system is attributable to the production of interstitial collagenase by the sinusoidal cell population. Such cell-cell interactions may play an important role in the maintenance of normal connective tissue structure of the liver during disease processes.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell interactions, adhesion</subject><subject>Cells, Cultured</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kupffer Cells - metabolism</subject><subject>Lipopolysaccharides - metabolism</subject><subject>Liver - cytology</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Microbial Collagenase - antagonists & inhibitors</subject><subject>Microbial Collagenase - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Rats</subject><subject>Rats, Inbred Strains</subject><issn>0016-5085</issn><issn>1528-0012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFu1DAQhi1UtGwLbwBSDhUqhxQ7ThznUglVQCtV4gBcsWbtSWvkjRePU2nfHodd7ZGLR_b_zWj8MfZW8GvBhfrIy1F3XHdXWn0YStX18IKtRdfoumTNGVufkFfsnOg353yQWqzYSnLeCd6u2a_v2W_nANnHqYpj5aeMibLPHkJlYwjwiBMQlqBcazuHPCekBU2QqyfcQY52n8sTTK4iP80UvVuaMQR6zV6OEAjfHOsF-_nl84_bu_rh29f7208PtZVc5FpwCbhxrnOD5JK3Elup-tFaJe2glIJWN71VyKVunByc6sauH3sh1QYQNiAv2PvD3F2Kf2akbLaelg1gwjiT6VWBm7YvYHsAbYpECUezS34LaW8EN4tWszgzizOjlfmn1Qyl7d1x_rzZojs1HT2W_PKYA1kIY4LJejphvVblP03Bbg4YFhfPHpMh63Gy6HxCm42L_v97_AWUVpSY</recordid><startdate>198604</startdate><enddate>198604</enddate><creator>Kashiwazaki, Kazuo</creator><creator>Hibbs, Margaret S.</creator><creator>Seyer, Jerome M.</creator><creator>Mainardi, Carlo L.</creator><creator>Kang, Andrew H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198604</creationdate><title>Stimulation of interstitial collagenase in co-cultures of rat hepatocytes and sinusoidal cells</title><author>Kashiwazaki, Kazuo ; Hibbs, Margaret S. ; Seyer, Jerome M. ; Mainardi, Carlo L. ; Kang, Andrew H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-103aebdd5d9303043e4367fcc63c9666a4827c6e0382d39d65f57f7136baeaba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell interactions, adhesion</topic><topic>Cells, Cultured</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kupffer Cells - metabolism</topic><topic>Lipopolysaccharides - metabolism</topic><topic>Liver - cytology</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Microbial Collagenase - antagonists & inhibitors</topic><topic>Microbial Collagenase - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Rats</topic><topic>Rats, Inbred Strains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashiwazaki, Kazuo</creatorcontrib><creatorcontrib>Hibbs, Margaret S.</creatorcontrib><creatorcontrib>Seyer, Jerome M.</creatorcontrib><creatorcontrib>Mainardi, Carlo L.</creatorcontrib><creatorcontrib>Kang, Andrew H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Gastroenterology (New York, N.Y. 1943)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashiwazaki, Kazuo</au><au>Hibbs, Margaret S.</au><au>Seyer, Jerome M.</au><au>Mainardi, Carlo L.</au><au>Kang, Andrew H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulation of interstitial collagenase in co-cultures of rat hepatocytes and sinusoidal cells</atitle><jtitle>Gastroenterology (New York, N.Y. 1943)</jtitle><addtitle>Gastroenterology</addtitle><date>1986-04</date><risdate>1986</risdate><volume>90</volume><issue>4</issue><spage>829</spage><epage>836</epage><pages>829-836</pages><issn>0016-5085</issn><eissn>1528-0012</eissn><coden>GASTAB</coden><abstract>Although the fibrosis observed during chronic liver injury is the result of a complex process, the striking accumulation of collagen in end stage liver disease has provoked interest in the mechanisms that regulate both collagen production and degradation in the diseased liver. The present studies have examined the cell interactions that may be important in the regulation of collagen degradation. Although minimal amounts of interstitial collagenase activity were noted in cultures of normal hepatocytes and sinusoidal cells, the co-cultures of these cells in the presence of lipopolysaccharide showed a substantial increase in collagenase activity. When the hepatocytes were obtained from rats that had been treated with carbon tetrachloride in vivo, the enhanced activity seen in the co-cultures did not require the addition of lipopolysaccharide. Further characterization of this interaction suggested that the increase in collagenolytic activity was partially due to the elaboration of soluble factors by the hepatocyte, which stimulated collagenase production by the sinusoidal cell population. Elaboration of collagenase activity by the sinusoidal cells was inhibited by cycloheximide, suggesting that protein synthesis was required. The proteolytic activity was abrogated by inhibitors of metalloproteinases but not by serine or thiol proteinase inhibitors. The degradation products of type I collagen were typical of the expected products seen with vertebrate collagenases. Thus, it appears that the increased collagenolytic activity detected in this co-culture system is attributable to the production of interstitial collagenase by the sinusoidal cell population. Such cell-cell interactions may play an important role in the maintenance of normal connective tissue structure of the liver during disease processes.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>3005104</pmid><doi>10.1016/0016-5085(86)90858-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-5085 |
ispartof | Gastroenterology (New York, N.Y. 1943), 1986-04, Vol.90 (4), p.829-836 |
issn | 0016-5085 1528-0012 |
language | eng |
recordid | cdi_proquest_miscellaneous_76713247 |
source | MEDLINE; Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | Animals Biological and medical sciences Cell interactions, adhesion Cells, Cultured Fundamental and applied biological sciences. Psychology Kupffer Cells - metabolism Lipopolysaccharides - metabolism Liver - cytology Liver - metabolism Male Microbial Collagenase - antagonists & inhibitors Microbial Collagenase - metabolism Molecular and cellular biology Rats Rats, Inbred Strains |
title | Stimulation of interstitial collagenase in co-cultures of rat hepatocytes and sinusoidal cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulation%20of%20interstitial%20collagenase%20in%20co-cultures%20of%20rat%20hepatocytes%20and%20sinusoidal%20cells&rft.jtitle=Gastroenterology%20(New%20York,%20N.Y.%201943)&rft.au=Kashiwazaki,%20Kazuo&rft.date=1986-04&rft.volume=90&rft.issue=4&rft.spage=829&rft.epage=836&rft.pages=829-836&rft.issn=0016-5085&rft.eissn=1528-0012&rft.coden=GASTAB&rft_id=info:doi/10.1016/0016-5085(86)90858-9&rft_dat=%3Cproquest_cross%3E76713247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76713247&rft_id=info:pmid/3005104&rft_els_id=0016508586908589&rfr_iscdi=true |