cAMP-dependent protein kinase and protein kinase C consensus site mutations of the beta-adrenergic receptor. Effect on desensitization and stimulation of adenylylcyclase
Activation of cAMP-dependent protein kinase (cAPK) or protein kinase C (PKC) causes a rapid desensitization of beta 2-adrenergic receptor (beta AR) stimulation of adenylylcyclase in L cells, which previous studies suggest involves the cAPK/PKC consensus phosphorylation site in the third intracellula...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1994-09, Vol.269 (37), p.23032-23038 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Activation of cAMP-dependent protein kinase (cAPK) or protein kinase C (PKC) causes a rapid desensitization of beta 2-adrenergic
receptor (beta AR) stimulation of adenylylcyclase in L cells, which previous studies suggest involves the cAPK/PKC consensus
phosphorylation site in the third intracellular loop of the beta AR, RRSSK263. To determine the role of the individual serines
in the cAPK- and PKC-mediated desensitizations, wild type (WT) and mutant beta ARs containing the substitutions, Ser261-->Ala,
Ser262-->Ala, Ser262-->Asp, and Ser261/262-->Ala, were constructed and stably transfected into L cells. Results showed that
serine 262 was the primary site of the cAPK-induced desensitization, whereas either serine 261 or serine 262 was sufficient
to confer the 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA)/PKC-mediated desensitization. Coincident stimulation
of cAPK and PKC caused an additive desensitization (6-8-fold increase in the EC50) which was significantly reduced (80%) only
by the double substitution mutation. Quantitative evaluation of the coupling efficiencies and the GTP-shift of the WT and
mutant receptors demonstrated that only one of the mutants, Ser262-->Ala, was partially uncoupled. The Ser262-->Asp mutation
did not significantly uncouple, demonstrating that introducing a negative charge did not appear to mimic the desensitized
state of the receptor. The beta AR expression level played a critical role in determining the pattern of beta AR desensitization;
i.e. while the overall desensitization was unaltered within a large range of beta AR expression level (10-300 fmol/mg), the
increase in EC50 and decrease in Vmax were differentially affected by the change in the receptor level. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(17)31615-0 |