Use of denaturing gradient gel electrophoresis to identify mutant sequences in the β-glucocerebrosidase gene

A marked deficiency of beta -glucocerebrosidase (EC 3.2.1.45), the lysosomal beta -glucocerebrosidase responsible for catalyzing the hydrolysis of the glucosphingolipid glucocerebroside to ceremide and glucose, is the cause of Gaucher disease. The variable onset of Gaucher symptoms causes difficulti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human mutation 1994, Vol.3 (4), p.411-415
Hauptverfasser: Laubscher, Kevin H., Glew, Robert H., Lee, Robert E., Okinaka, Richard T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue 4
container_start_page 411
container_title Human mutation
container_volume 3
creator Laubscher, Kevin H.
Glew, Robert H.
Lee, Robert E.
Okinaka, Richard T.
description A marked deficiency of beta -glucocerebrosidase (EC 3.2.1.45), the lysosomal beta -glucocerebrosidase responsible for catalyzing the hydrolysis of the glucosphingolipid glucocerebroside to ceremide and glucose, is the cause of Gaucher disease. The variable onset of Gaucher symptoms causes difficulties in the clinical diagnosis of this disease. Although leukocyte beta -glucocerebrosidase assays are useful for confirming Gaucher disease, the severity of the disease does not always correlate with the level of residual enzyme activity. As a consequence, newer approaches have focused on determining whether the disease severity in Gaucher patients can be associated with specific molecular changes (i.e., mutations) within the beta -glucocerebrosidase gene. When the position of a mutation is not known, techniques like mismatched cleavage of RNA: cDNA hybrids, single-strand conformation polymorphism (SSCP), and denaturing gradient gel electrophoresis (DGGE) can be used to localize mutations to within small regions of a genomic sequence. DGGE is a sensitive, alternative method that also can be used to detect mutant alleles in short DNA fragments. This approach previously has been used to detect mutations in exon 9 of the beta -glucocerebrosidase gene in humans. Extension of this approach allowed analysis of exons 5 through 10 of the beta -glucocerebrosidase gene. This report demonstrates the ability of DGGE to distinguish wildtype, recombinant, and L444P sequences in exon 10, and wildtype and N370S sequences in exon 9. In addition, the DGGE procedure has been used to identify a rare exon 9 mutation in a type 1 patient. The mutation is a G to A change at cDNA base pair 1246, which results in an amino acid coding change from Gly super(377) to Ser super(377) (G377S).
doi_str_mv 10.1002/humu.1380030418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76694642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76694642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-ae9eb7248f8ae8aa6d9d8745c47ab1ed8e4dc00d1c60df7b72671b7a8c61b8a13</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS0EKqWwZoXkFbtprzMe2yNWKIK0UgpCIsDO8th3Job5CbZHkNfqg_BMOEpUxKorWzrfOb7Xh5CXDC4ZwOJqOw_zJSsVQAmcqUfknEGtiqzxx4d7VRdS1vwpeRbjdwBQVVWekTMFinFg52TYRKRTSx2OJs3Bjx3tgnEex0Q77Cn2aFOYdtspYPSRpon6zCbf7ukwJ5OxiD9nHC1G6keatkj_3BVdP9vJYsAmTNE7kx_pcMTn5Elr-ogvTucF2bx_93l5Xaw_rm6Wb9eF5XmXwmCNjVxw1SqDyhjhaqckryyXpmHoFHJnARyzAlwrMyoka6RRVrBGGVZekNfH3F2Y8nAx6cFHi31vRpzmqKUQNRd88SDIRA2i4ofEqyNo80IxYKt3wQ8m7DUDfWhCH5rQ_5rIjlen6LkZ0N3zp6_P-puj_sv3uH8oTl9vbjf_pRdHt48Jf9-7TfihhSxlpb9-WOnb1TfOPy3X-kv5F_2LqKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16906541</pqid></control><display><type>article</type><title>Use of denaturing gradient gel electrophoresis to identify mutant sequences in the β-glucocerebrosidase gene</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Laubscher, Kevin H. ; Glew, Robert H. ; Lee, Robert E. ; Okinaka, Richard T.</creator><creatorcontrib>Laubscher, Kevin H. ; Glew, Robert H. ; Lee, Robert E. ; Okinaka, Richard T.</creatorcontrib><description>A marked deficiency of beta -glucocerebrosidase (EC 3.2.1.45), the lysosomal beta -glucocerebrosidase responsible for catalyzing the hydrolysis of the glucosphingolipid glucocerebroside to ceremide and glucose, is the cause of Gaucher disease. The variable onset of Gaucher symptoms causes difficulties in the clinical diagnosis of this disease. Although leukocyte beta -glucocerebrosidase assays are useful for confirming Gaucher disease, the severity of the disease does not always correlate with the level of residual enzyme activity. As a consequence, newer approaches have focused on determining whether the disease severity in Gaucher patients can be associated with specific molecular changes (i.e., mutations) within the beta -glucocerebrosidase gene. When the position of a mutation is not known, techniques like mismatched cleavage of RNA: cDNA hybrids, single-strand conformation polymorphism (SSCP), and denaturing gradient gel electrophoresis (DGGE) can be used to localize mutations to within small regions of a genomic sequence. DGGE is a sensitive, alternative method that also can be used to detect mutant alleles in short DNA fragments. This approach previously has been used to detect mutations in exon 9 of the beta -glucocerebrosidase gene in humans. Extension of this approach allowed analysis of exons 5 through 10 of the beta -glucocerebrosidase gene. This report demonstrates the ability of DGGE to distinguish wildtype, recombinant, and L444P sequences in exon 10, and wildtype and N370S sequences in exon 9. In addition, the DGGE procedure has been used to identify a rare exon 9 mutation in a type 1 patient. The mutation is a G to A change at cDNA base pair 1246, which results in an amino acid coding change from Gly super(377) to Ser super(377) (G377S).</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.1380030418</identifier><identifier>PMID: 8081401</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Base Sequence ; Child, Preschool ; DNA Mutational Analysis - methods ; DNA Primers ; Electrophoresis, Polyacrylamide Gel - methods ; Female ; Gaucher Disease - enzymology ; Gaucher Disease - genetics ; gel electrophoresis ; genes ; glucosylceramidase ; Glucosylceramidase - genetics ; Glycine - genetics ; Humans ; identification ; man ; Molecular Sequence Data ; mutation ; Nucleic Acid Denaturation ; Nucleic Acid Heteroduplexes - genetics ; Point Mutation ; Polymerase Chain Reaction ; Pseudogenes ; Serine - genetics</subject><ispartof>Human mutation, 1994, Vol.3 (4), p.411-415</ispartof><rights>Copyright © 1994 Wiley‐Liss, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4138-ae9eb7248f8ae8aa6d9d8745c47ab1ed8e4dc00d1c60df7b72671b7a8c61b8a13</citedby><cites>FETCH-LOGICAL-c4138-ae9eb7248f8ae8aa6d9d8745c47ab1ed8e4dc00d1c60df7b72671b7a8c61b8a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.1380030418$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.1380030418$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,4010,27904,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8081401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laubscher, Kevin H.</creatorcontrib><creatorcontrib>Glew, Robert H.</creatorcontrib><creatorcontrib>Lee, Robert E.</creatorcontrib><creatorcontrib>Okinaka, Richard T.</creatorcontrib><title>Use of denaturing gradient gel electrophoresis to identify mutant sequences in the β-glucocerebrosidase gene</title><title>Human mutation</title><addtitle>Hum. Mutat</addtitle><description>A marked deficiency of beta -glucocerebrosidase (EC 3.2.1.45), the lysosomal beta -glucocerebrosidase responsible for catalyzing the hydrolysis of the glucosphingolipid glucocerebroside to ceremide and glucose, is the cause of Gaucher disease. The variable onset of Gaucher symptoms causes difficulties in the clinical diagnosis of this disease. Although leukocyte beta -glucocerebrosidase assays are useful for confirming Gaucher disease, the severity of the disease does not always correlate with the level of residual enzyme activity. As a consequence, newer approaches have focused on determining whether the disease severity in Gaucher patients can be associated with specific molecular changes (i.e., mutations) within the beta -glucocerebrosidase gene. When the position of a mutation is not known, techniques like mismatched cleavage of RNA: cDNA hybrids, single-strand conformation polymorphism (SSCP), and denaturing gradient gel electrophoresis (DGGE) can be used to localize mutations to within small regions of a genomic sequence. DGGE is a sensitive, alternative method that also can be used to detect mutant alleles in short DNA fragments. This approach previously has been used to detect mutations in exon 9 of the beta -glucocerebrosidase gene in humans. Extension of this approach allowed analysis of exons 5 through 10 of the beta -glucocerebrosidase gene. This report demonstrates the ability of DGGE to distinguish wildtype, recombinant, and L444P sequences in exon 10, and wildtype and N370S sequences in exon 9. In addition, the DGGE procedure has been used to identify a rare exon 9 mutation in a type 1 patient. The mutation is a G to A change at cDNA base pair 1246, which results in an amino acid coding change from Gly super(377) to Ser super(377) (G377S).</description><subject>Base Sequence</subject><subject>Child, Preschool</subject><subject>DNA Mutational Analysis - methods</subject><subject>DNA Primers</subject><subject>Electrophoresis, Polyacrylamide Gel - methods</subject><subject>Female</subject><subject>Gaucher Disease - enzymology</subject><subject>Gaucher Disease - genetics</subject><subject>gel electrophoresis</subject><subject>genes</subject><subject>glucosylceramidase</subject><subject>Glucosylceramidase - genetics</subject><subject>Glycine - genetics</subject><subject>Humans</subject><subject>identification</subject><subject>man</subject><subject>Molecular Sequence Data</subject><subject>mutation</subject><subject>Nucleic Acid Denaturation</subject><subject>Nucleic Acid Heteroduplexes - genetics</subject><subject>Point Mutation</subject><subject>Polymerase Chain Reaction</subject><subject>Pseudogenes</subject><subject>Serine - genetics</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEUhS0EKqWwZoXkFbtprzMe2yNWKIK0UgpCIsDO8th3Job5CbZHkNfqg_BMOEpUxKorWzrfOb7Xh5CXDC4ZwOJqOw_zJSsVQAmcqUfknEGtiqzxx4d7VRdS1vwpeRbjdwBQVVWekTMFinFg52TYRKRTSx2OJs3Bjx3tgnEex0Q77Cn2aFOYdtspYPSRpon6zCbf7ukwJ5OxiD9nHC1G6keatkj_3BVdP9vJYsAmTNE7kx_pcMTn5Elr-ogvTucF2bx_93l5Xaw_rm6Wb9eF5XmXwmCNjVxw1SqDyhjhaqckryyXpmHoFHJnARyzAlwrMyoka6RRVrBGGVZekNfH3F2Y8nAx6cFHi31vRpzmqKUQNRd88SDIRA2i4ofEqyNo80IxYKt3wQ8m7DUDfWhCH5rQ_5rIjlen6LkZ0N3zp6_P-puj_sv3uH8oTl9vbjf_pRdHt48Jf9-7TfihhSxlpb9-WOnb1TfOPy3X-kv5F_2LqKg</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Laubscher, Kevin H.</creator><creator>Glew, Robert H.</creator><creator>Lee, Robert E.</creator><creator>Okinaka, Richard T.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T3</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>1994</creationdate><title>Use of denaturing gradient gel electrophoresis to identify mutant sequences in the β-glucocerebrosidase gene</title><author>Laubscher, Kevin H. ; Glew, Robert H. ; Lee, Robert E. ; Okinaka, Richard T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-ae9eb7248f8ae8aa6d9d8745c47ab1ed8e4dc00d1c60df7b72671b7a8c61b8a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Base Sequence</topic><topic>Child, Preschool</topic><topic>DNA Mutational Analysis - methods</topic><topic>DNA Primers</topic><topic>Electrophoresis, Polyacrylamide Gel - methods</topic><topic>Female</topic><topic>Gaucher Disease - enzymology</topic><topic>Gaucher Disease - genetics</topic><topic>gel electrophoresis</topic><topic>genes</topic><topic>glucosylceramidase</topic><topic>Glucosylceramidase - genetics</topic><topic>Glycine - genetics</topic><topic>Humans</topic><topic>identification</topic><topic>man</topic><topic>Molecular Sequence Data</topic><topic>mutation</topic><topic>Nucleic Acid Denaturation</topic><topic>Nucleic Acid Heteroduplexes - genetics</topic><topic>Point Mutation</topic><topic>Polymerase Chain Reaction</topic><topic>Pseudogenes</topic><topic>Serine - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laubscher, Kevin H.</creatorcontrib><creatorcontrib>Glew, Robert H.</creatorcontrib><creatorcontrib>Lee, Robert E.</creatorcontrib><creatorcontrib>Okinaka, Richard T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Human Genome Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laubscher, Kevin H.</au><au>Glew, Robert H.</au><au>Lee, Robert E.</au><au>Okinaka, Richard T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of denaturing gradient gel electrophoresis to identify mutant sequences in the β-glucocerebrosidase gene</atitle><jtitle>Human mutation</jtitle><addtitle>Hum. Mutat</addtitle><date>1994</date><risdate>1994</risdate><volume>3</volume><issue>4</issue><spage>411</spage><epage>415</epage><pages>411-415</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>A marked deficiency of beta -glucocerebrosidase (EC 3.2.1.45), the lysosomal beta -glucocerebrosidase responsible for catalyzing the hydrolysis of the glucosphingolipid glucocerebroside to ceremide and glucose, is the cause of Gaucher disease. The variable onset of Gaucher symptoms causes difficulties in the clinical diagnosis of this disease. Although leukocyte beta -glucocerebrosidase assays are useful for confirming Gaucher disease, the severity of the disease does not always correlate with the level of residual enzyme activity. As a consequence, newer approaches have focused on determining whether the disease severity in Gaucher patients can be associated with specific molecular changes (i.e., mutations) within the beta -glucocerebrosidase gene. When the position of a mutation is not known, techniques like mismatched cleavage of RNA: cDNA hybrids, single-strand conformation polymorphism (SSCP), and denaturing gradient gel electrophoresis (DGGE) can be used to localize mutations to within small regions of a genomic sequence. DGGE is a sensitive, alternative method that also can be used to detect mutant alleles in short DNA fragments. This approach previously has been used to detect mutations in exon 9 of the beta -glucocerebrosidase gene in humans. Extension of this approach allowed analysis of exons 5 through 10 of the beta -glucocerebrosidase gene. This report demonstrates the ability of DGGE to distinguish wildtype, recombinant, and L444P sequences in exon 10, and wildtype and N370S sequences in exon 9. In addition, the DGGE procedure has been used to identify a rare exon 9 mutation in a type 1 patient. The mutation is a G to A change at cDNA base pair 1246, which results in an amino acid coding change from Gly super(377) to Ser super(377) (G377S).</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>8081401</pmid><doi>10.1002/humu.1380030418</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-7794
ispartof Human mutation, 1994, Vol.3 (4), p.411-415
issn 1059-7794
1098-1004
language eng
recordid cdi_proquest_miscellaneous_76694642
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Base Sequence
Child, Preschool
DNA Mutational Analysis - methods
DNA Primers
Electrophoresis, Polyacrylamide Gel - methods
Female
Gaucher Disease - enzymology
Gaucher Disease - genetics
gel electrophoresis
genes
glucosylceramidase
Glucosylceramidase - genetics
Glycine - genetics
Humans
identification
man
Molecular Sequence Data
mutation
Nucleic Acid Denaturation
Nucleic Acid Heteroduplexes - genetics
Point Mutation
Polymerase Chain Reaction
Pseudogenes
Serine - genetics
title Use of denaturing gradient gel electrophoresis to identify mutant sequences in the β-glucocerebrosidase gene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20denaturing%20gradient%20gel%20electrophoresis%20to%20identify%20mutant%20sequences%20in%20the%20%CE%B2-glucocerebrosidase%20gene&rft.jtitle=Human%20mutation&rft.au=Laubscher,%20Kevin%20H.&rft.date=1994&rft.volume=3&rft.issue=4&rft.spage=411&rft.epage=415&rft.pages=411-415&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.1380030418&rft_dat=%3Cproquest_cross%3E76694642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16906541&rft_id=info:pmid/8081401&rfr_iscdi=true