MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast

The discovery that mutations in DNA mismatch repair genes can cause hereditary colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1994-08, Vol.265 (5175), p.1091-1093
Hauptverfasser: Prolla, Tomas A., Pang, Qishen, Alani, Eric, Kolodner, Richard D., Liskay, R. Micheal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1093
container_issue 5175
container_start_page 1091
container_title Science (American Association for the Advancement of Science)
container_volume 265
creator Prolla, Tomas A.
Pang, Qishen
Alani, Eric
Kolodner, Richard D.
Liskay, R. Micheal
description The discovery that mutations in DNA mismatch repair genes can cause hereditary colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experiments revealed that the yeast MLH1 and PMS1 proteins physically associate, possibly forming a heterodimer, and that MLH1 and PMS1 act in concert to bind a MSH2-heteroduplex complex containing a G-T mismatch. Thus, MSH2, MLH1, and PMS1 are likely to form a ternary complex during the initiation of eukaryotic DNA mismatch repair.
doi_str_mv 10.1126/science.8066446
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_76671590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A15752986</galeid><jstor_id>2884230</jstor_id><sourcerecordid>A15752986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-af842be0354203d35d6b4be49f89448cd17c8c8d70fbc50859f92b00db5c20bb3</originalsourceid><addsrcrecordid>eNqN0u-L0zAYB_AiyjlPX_tGpS9EfLHeJWmTJi_n1O1guwnz9GVI06SXoz92SQref29Gy2QwcBRaeL6fJiHPE0VvIbiCEJFrJ41qpbqigJAsI8-iCQQMJwyB9Hk0ASAlCQU5fhm9cu4BgJCx9CK6GPkk-r1eLeE0_rHehrdoy3i9XaLYtF5ZIb3pWheXvTVtFft7FerGG7Evx52Ov97O4sa4Rnh5H1u1E8YGET8p4fzr6IUWtVNvxu9ldPf928_5MlltFjfz2SqRJIc-EZpmqFAgxVk4cZnikhRZoTKmKcsyKkuYSyppmQNdSAwoZpqhAoCywBKBokgvo0_DujvbPfbKeR5OJFVdi1Z1veM5CftgBv4LIWEQMkQCnA6wErXiptWdD1dRqTbcSN21SptQnkGcY8TonicneHhK1Rh5yn8-8oF49cdXoneO32xvz6abX2fTL4tzKV2sjuj0FJVdXatK8dDI-eaIXw9c2s45qzTfWdMI-8Qh4Ptp5eO08nH8wh_vx6b0RaPKg_-Xfxxz4aSotRWtNO7AMkgIRDiwdwN7cL6zhxjRMFzpvvUfhliLjovKhhXutpAxDGCKCMrSvxWa_sI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16911926</pqid></control><display><type>article</type><title>MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><source>JSTOR</source><creator>Prolla, Tomas A. ; Pang, Qishen ; Alani, Eric ; Kolodner, Richard D. ; Liskay, R. Micheal</creator><creatorcontrib>Prolla, Tomas A. ; Pang, Qishen ; Alani, Eric ; Kolodner, Richard D. ; Liskay, R. Micheal ; Yale University School of Medicine, New Haven, CT</creatorcontrib><description>The discovery that mutations in DNA mismatch repair genes can cause hereditary colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experiments revealed that the yeast MLH1 and PMS1 proteins physically associate, possibly forming a heterodimer, and that MLH1 and PMS1 act in concert to bind a MSH2-heteroduplex complex containing a G-T mismatch. Thus, MSH2, MLH1, and PMS1 are likely to form a ternary complex during the initiation of eukaryotic DNA mismatch repair.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.8066446</identifier><identifier>PMID: 8066446</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Adaptor Proteins, Signal Transducing ; adn ; binding proteins ; Biological and medical sciences ; Carrier Proteins ; Cells ; Cells (Biology) ; Chromatography, Affinity ; DNA ; DNA mismatch repair ; DNA Repair ; DNA Replication ; DNA, Fungal - metabolism ; DNA-Binding Proteins ; Eukaryotes ; Eukaryotic cells ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - metabolism ; Gels ; Genetic aspects ; Genetic mutation ; Hereditary nonpolyposis colorectal neoplasms ; Microsatellites ; Models, Genetic ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis. Repair ; MutL Protein Homolog 1 ; MutL Proteins ; MutS Homolog 2 Protein ; Nucleic Acid Heteroduplexes - metabolism ; Plasmids ; Polymerase chain reaction ; proteinas ; proteinas aglutinantes ; proteine ; proteine de liaison ; proteins ; Recombinant Fusion Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; Tumors ; Yeasts</subject><ispartof>Science (American Association for the Advancement of Science), 1994-08, Vol.265 (5175), p.1091-1093</ispartof><rights>Copyright 1994 American Association for the Advancement of Science</rights><rights>1994 INIST-CNRS</rights><rights>COPYRIGHT 1994 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1994 American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-af842be0354203d35d6b4be49f89448cd17c8c8d70fbc50859f92b00db5c20bb3</citedby><cites>FETCH-LOGICAL-c671t-af842be0354203d35d6b4be49f89448cd17c8c8d70fbc50859f92b00db5c20bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2884230$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2884230$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2875,2876,27915,27916,58008,58241</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4166125$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8066446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prolla, Tomas A.</creatorcontrib><creatorcontrib>Pang, Qishen</creatorcontrib><creatorcontrib>Alani, Eric</creatorcontrib><creatorcontrib>Kolodner, Richard D.</creatorcontrib><creatorcontrib>Liskay, R. Micheal</creatorcontrib><creatorcontrib>Yale University School of Medicine, New Haven, CT</creatorcontrib><title>MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The discovery that mutations in DNA mismatch repair genes can cause hereditary colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experiments revealed that the yeast MLH1 and PMS1 proteins physically associate, possibly forming a heterodimer, and that MLH1 and PMS1 act in concert to bind a MSH2-heteroduplex complex containing a G-T mismatch. Thus, MSH2, MLH1, and PMS1 are likely to form a ternary complex during the initiation of eukaryotic DNA mismatch repair.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>adn</subject><subject>binding proteins</subject><subject>Biological and medical sciences</subject><subject>Carrier Proteins</subject><subject>Cells</subject><subject>Cells (Biology)</subject><subject>Chromatography, Affinity</subject><subject>DNA</subject><subject>DNA mismatch repair</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA-Binding Proteins</subject><subject>Eukaryotes</subject><subject>Eukaryotic cells</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - metabolism</subject><subject>Gels</subject><subject>Genetic aspects</subject><subject>Genetic mutation</subject><subject>Hereditary nonpolyposis colorectal neoplasms</subject><subject>Microsatellites</subject><subject>Models, Genetic</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis. Repair</subject><subject>MutL Protein Homolog 1</subject><subject>MutL Proteins</subject><subject>MutS Homolog 2 Protein</subject><subject>Nucleic Acid Heteroduplexes - metabolism</subject><subject>Plasmids</subject><subject>Polymerase chain reaction</subject><subject>proteinas</subject><subject>proteinas aglutinantes</subject><subject>proteine</subject><subject>proteine de liaison</subject><subject>proteins</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Tumors</subject><subject>Yeasts</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0u-L0zAYB_AiyjlPX_tGpS9EfLHeJWmTJi_n1O1guwnz9GVI06SXoz92SQref29Gy2QwcBRaeL6fJiHPE0VvIbiCEJFrJ41qpbqigJAsI8-iCQQMJwyB9Hk0ASAlCQU5fhm9cu4BgJCx9CK6GPkk-r1eLeE0_rHehrdoy3i9XaLYtF5ZIb3pWheXvTVtFft7FerGG7Evx52Ov97O4sa4Rnh5H1u1E8YGET8p4fzr6IUWtVNvxu9ldPf928_5MlltFjfz2SqRJIc-EZpmqFAgxVk4cZnikhRZoTKmKcsyKkuYSyppmQNdSAwoZpqhAoCywBKBokgvo0_DujvbPfbKeR5OJFVdi1Z1veM5CftgBv4LIWEQMkQCnA6wErXiptWdD1dRqTbcSN21SptQnkGcY8TonicneHhK1Rh5yn8-8oF49cdXoneO32xvz6abX2fTL4tzKV2sjuj0FJVdXatK8dDI-eaIXw9c2s45qzTfWdMI-8Qh4Ptp5eO08nH8wh_vx6b0RaPKg_-Xfxxz4aSotRWtNO7AMkgIRDiwdwN7cL6zhxjRMFzpvvUfhliLjovKhhXutpAxDGCKCMrSvxWa_sI</recordid><startdate>19940819</startdate><enddate>19940819</enddate><creator>Prolla, Tomas A.</creator><creator>Pang, Qishen</creator><creator>Alani, Eric</creator><creator>Kolodner, Richard D.</creator><creator>Liskay, R. Micheal</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7TM</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>19940819</creationdate><title>MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast</title><author>Prolla, Tomas A. ; Pang, Qishen ; Alani, Eric ; Kolodner, Richard D. ; Liskay, R. Micheal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-af842be0354203d35d6b4be49f89448cd17c8c8d70fbc50859f92b00db5c20bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>adn</topic><topic>binding proteins</topic><topic>Biological and medical sciences</topic><topic>Carrier Proteins</topic><topic>Cells</topic><topic>Cells (Biology)</topic><topic>Chromatography, Affinity</topic><topic>DNA</topic><topic>DNA mismatch repair</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA-Binding Proteins</topic><topic>Eukaryotes</topic><topic>Eukaryotic cells</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - metabolism</topic><topic>Gels</topic><topic>Genetic aspects</topic><topic>Genetic mutation</topic><topic>Hereditary nonpolyposis colorectal neoplasms</topic><topic>Microsatellites</topic><topic>Models, Genetic</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis. Repair</topic><topic>MutL Protein Homolog 1</topic><topic>MutL Proteins</topic><topic>MutS Homolog 2 Protein</topic><topic>Nucleic Acid Heteroduplexes - metabolism</topic><topic>Plasmids</topic><topic>Polymerase chain reaction</topic><topic>proteinas</topic><topic>proteinas aglutinantes</topic><topic>proteine</topic><topic>proteine de liaison</topic><topic>proteins</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Tumors</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prolla, Tomas A.</creatorcontrib><creatorcontrib>Pang, Qishen</creatorcontrib><creatorcontrib>Alani, Eric</creatorcontrib><creatorcontrib>Kolodner, Richard D.</creatorcontrib><creatorcontrib>Liskay, R. Micheal</creatorcontrib><creatorcontrib>Yale University School of Medicine, New Haven, CT</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Biography (Gale in Context)</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prolla, Tomas A.</au><au>Pang, Qishen</au><au>Alani, Eric</au><au>Kolodner, Richard D.</au><au>Liskay, R. Micheal</au><aucorp>Yale University School of Medicine, New Haven, CT</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1994-08-19</date><risdate>1994</risdate><volume>265</volume><issue>5175</issue><spage>1091</spage><epage>1093</epage><pages>1091-1093</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The discovery that mutations in DNA mismatch repair genes can cause hereditary colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experiments revealed that the yeast MLH1 and PMS1 proteins physically associate, possibly forming a heterodimer, and that MLH1 and PMS1 act in concert to bind a MSH2-heteroduplex complex containing a G-T mismatch. Thus, MSH2, MLH1, and PMS1 are likely to form a ternary complex during the initiation of eukaryotic DNA mismatch repair.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>8066446</pmid><doi>10.1126/science.8066446</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1994-08, Vol.265 (5175), p.1091-1093
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_76671590
source American Association for the Advancement of Science; MEDLINE; JSTOR
subjects Adaptor Proteins, Signal Transducing
adn
binding proteins
Biological and medical sciences
Carrier Proteins
Cells
Cells (Biology)
Chromatography, Affinity
DNA
DNA mismatch repair
DNA Repair
DNA Replication
DNA, Fungal - metabolism
DNA-Binding Proteins
Eukaryotes
Eukaryotic cells
Fundamental and applied biological sciences. Psychology
Fungal Proteins - metabolism
Gels
Genetic aspects
Genetic mutation
Hereditary nonpolyposis colorectal neoplasms
Microsatellites
Models, Genetic
Molecular and cellular biology
Molecular genetics
Mutagenesis. Repair
MutL Protein Homolog 1
MutL Proteins
MutS Homolog 2 Protein
Nucleic Acid Heteroduplexes - metabolism
Plasmids
Polymerase chain reaction
proteinas
proteinas aglutinantes
proteine
proteine de liaison
proteins
Recombinant Fusion Proteins - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins
Tumors
Yeasts
title MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MLH1,%20PMS1,%20and%20MSH2%20interactions%20during%20the%20initiation%20of%20DNA%20mismatch%20repair%20in%20yeast&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Prolla,%20Tomas%20A.&rft.aucorp=Yale%20University%20School%20of%20Medicine,%20New%20Haven,%20CT&rft.date=1994-08-19&rft.volume=265&rft.issue=5175&rft.spage=1091&rft.epage=1093&rft.pages=1091-1093&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.8066446&rft_dat=%3Cgale_proqu%3EA15752986%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16911926&rft_id=info:pmid/8066446&rft_galeid=A15752986&rft_jstor_id=2884230&rfr_iscdi=true