MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast
The discovery that mutations in DNA mismatch repair genes can cause hereditary colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experim...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1994-08, Vol.265 (5175), p.1091-1093 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1093 |
---|---|
container_issue | 5175 |
container_start_page | 1091 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 265 |
creator | Prolla, Tomas A. Pang, Qishen Alani, Eric Kolodner, Richard D. Liskay, R. Micheal |
description | The discovery that mutations in DNA mismatch repair genes can cause hereditary colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experiments revealed that the yeast MLH1 and PMS1 proteins physically associate, possibly forming a heterodimer, and that MLH1 and PMS1 act in concert to bind a MSH2-heteroduplex complex containing a G-T mismatch. Thus, MSH2, MLH1, and PMS1 are likely to form a ternary complex during the initiation of eukaryotic DNA mismatch repair. |
doi_str_mv | 10.1126/science.8066446 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_76671590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A15752986</galeid><jstor_id>2884230</jstor_id><sourcerecordid>A15752986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-af842be0354203d35d6b4be49f89448cd17c8c8d70fbc50859f92b00db5c20bb3</originalsourceid><addsrcrecordid>eNqN0u-L0zAYB_AiyjlPX_tGpS9EfLHeJWmTJi_n1O1guwnz9GVI06SXoz92SQref29Gy2QwcBRaeL6fJiHPE0VvIbiCEJFrJ41qpbqigJAsI8-iCQQMJwyB9Hk0ASAlCQU5fhm9cu4BgJCx9CK6GPkk-r1eLeE0_rHehrdoy3i9XaLYtF5ZIb3pWheXvTVtFft7FerGG7Evx52Ov97O4sa4Rnh5H1u1E8YGET8p4fzr6IUWtVNvxu9ldPf928_5MlltFjfz2SqRJIc-EZpmqFAgxVk4cZnikhRZoTKmKcsyKkuYSyppmQNdSAwoZpqhAoCywBKBokgvo0_DujvbPfbKeR5OJFVdi1Z1veM5CftgBv4LIWEQMkQCnA6wErXiptWdD1dRqTbcSN21SptQnkGcY8TonicneHhK1Rh5yn8-8oF49cdXoneO32xvz6abX2fTL4tzKV2sjuj0FJVdXatK8dDI-eaIXw9c2s45qzTfWdMI-8Qh4Ptp5eO08nH8wh_vx6b0RaPKg_-Xfxxz4aSotRWtNO7AMkgIRDiwdwN7cL6zhxjRMFzpvvUfhliLjovKhhXutpAxDGCKCMrSvxWa_sI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16911926</pqid></control><display><type>article</type><title>MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><source>JSTOR</source><creator>Prolla, Tomas A. ; Pang, Qishen ; Alani, Eric ; Kolodner, Richard D. ; Liskay, R. Micheal</creator><creatorcontrib>Prolla, Tomas A. ; Pang, Qishen ; Alani, Eric ; Kolodner, Richard D. ; Liskay, R. Micheal ; Yale University School of Medicine, New Haven, CT</creatorcontrib><description>The discovery that mutations in DNA mismatch repair genes can cause hereditary colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experiments revealed that the yeast MLH1 and PMS1 proteins physically associate, possibly forming a heterodimer, and that MLH1 and PMS1 act in concert to bind a MSH2-heteroduplex complex containing a G-T mismatch. Thus, MSH2, MLH1, and PMS1 are likely to form a ternary complex during the initiation of eukaryotic DNA mismatch repair.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.8066446</identifier><identifier>PMID: 8066446</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Adaptor Proteins, Signal Transducing ; adn ; binding proteins ; Biological and medical sciences ; Carrier Proteins ; Cells ; Cells (Biology) ; Chromatography, Affinity ; DNA ; DNA mismatch repair ; DNA Repair ; DNA Replication ; DNA, Fungal - metabolism ; DNA-Binding Proteins ; Eukaryotes ; Eukaryotic cells ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - metabolism ; Gels ; Genetic aspects ; Genetic mutation ; Hereditary nonpolyposis colorectal neoplasms ; Microsatellites ; Models, Genetic ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis. Repair ; MutL Protein Homolog 1 ; MutL Proteins ; MutS Homolog 2 Protein ; Nucleic Acid Heteroduplexes - metabolism ; Plasmids ; Polymerase chain reaction ; proteinas ; proteinas aglutinantes ; proteine ; proteine de liaison ; proteins ; Recombinant Fusion Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; Tumors ; Yeasts</subject><ispartof>Science (American Association for the Advancement of Science), 1994-08, Vol.265 (5175), p.1091-1093</ispartof><rights>Copyright 1994 American Association for the Advancement of Science</rights><rights>1994 INIST-CNRS</rights><rights>COPYRIGHT 1994 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1994 American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-af842be0354203d35d6b4be49f89448cd17c8c8d70fbc50859f92b00db5c20bb3</citedby><cites>FETCH-LOGICAL-c671t-af842be0354203d35d6b4be49f89448cd17c8c8d70fbc50859f92b00db5c20bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2884230$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2884230$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2875,2876,27915,27916,58008,58241</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4166125$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8066446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prolla, Tomas A.</creatorcontrib><creatorcontrib>Pang, Qishen</creatorcontrib><creatorcontrib>Alani, Eric</creatorcontrib><creatorcontrib>Kolodner, Richard D.</creatorcontrib><creatorcontrib>Liskay, R. Micheal</creatorcontrib><creatorcontrib>Yale University School of Medicine, New Haven, CT</creatorcontrib><title>MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The discovery that mutations in DNA mismatch repair genes can cause hereditary colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experiments revealed that the yeast MLH1 and PMS1 proteins physically associate, possibly forming a heterodimer, and that MLH1 and PMS1 act in concert to bind a MSH2-heteroduplex complex containing a G-T mismatch. Thus, MSH2, MLH1, and PMS1 are likely to form a ternary complex during the initiation of eukaryotic DNA mismatch repair.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>adn</subject><subject>binding proteins</subject><subject>Biological and medical sciences</subject><subject>Carrier Proteins</subject><subject>Cells</subject><subject>Cells (Biology)</subject><subject>Chromatography, Affinity</subject><subject>DNA</subject><subject>DNA mismatch repair</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA-Binding Proteins</subject><subject>Eukaryotes</subject><subject>Eukaryotic cells</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - metabolism</subject><subject>Gels</subject><subject>Genetic aspects</subject><subject>Genetic mutation</subject><subject>Hereditary nonpolyposis colorectal neoplasms</subject><subject>Microsatellites</subject><subject>Models, Genetic</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis. Repair</subject><subject>MutL Protein Homolog 1</subject><subject>MutL Proteins</subject><subject>MutS Homolog 2 Protein</subject><subject>Nucleic Acid Heteroduplexes - metabolism</subject><subject>Plasmids</subject><subject>Polymerase chain reaction</subject><subject>proteinas</subject><subject>proteinas aglutinantes</subject><subject>proteine</subject><subject>proteine de liaison</subject><subject>proteins</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Tumors</subject><subject>Yeasts</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0u-L0zAYB_AiyjlPX_tGpS9EfLHeJWmTJi_n1O1guwnz9GVI06SXoz92SQref29Gy2QwcBRaeL6fJiHPE0VvIbiCEJFrJ41qpbqigJAsI8-iCQQMJwyB9Hk0ASAlCQU5fhm9cu4BgJCx9CK6GPkk-r1eLeE0_rHehrdoy3i9XaLYtF5ZIb3pWheXvTVtFft7FerGG7Evx52Ov97O4sa4Rnh5H1u1E8YGET8p4fzr6IUWtVNvxu9ldPf928_5MlltFjfz2SqRJIc-EZpmqFAgxVk4cZnikhRZoTKmKcsyKkuYSyppmQNdSAwoZpqhAoCywBKBokgvo0_DujvbPfbKeR5OJFVdi1Z1veM5CftgBv4LIWEQMkQCnA6wErXiptWdD1dRqTbcSN21SptQnkGcY8TonicneHhK1Rh5yn8-8oF49cdXoneO32xvz6abX2fTL4tzKV2sjuj0FJVdXatK8dDI-eaIXw9c2s45qzTfWdMI-8Qh4Ptp5eO08nH8wh_vx6b0RaPKg_-Xfxxz4aSotRWtNO7AMkgIRDiwdwN7cL6zhxjRMFzpvvUfhliLjovKhhXutpAxDGCKCMrSvxWa_sI</recordid><startdate>19940819</startdate><enddate>19940819</enddate><creator>Prolla, Tomas A.</creator><creator>Pang, Qishen</creator><creator>Alani, Eric</creator><creator>Kolodner, Richard D.</creator><creator>Liskay, R. Micheal</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7TM</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>19940819</creationdate><title>MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast</title><author>Prolla, Tomas A. ; Pang, Qishen ; Alani, Eric ; Kolodner, Richard D. ; Liskay, R. Micheal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-af842be0354203d35d6b4be49f89448cd17c8c8d70fbc50859f92b00db5c20bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>adn</topic><topic>binding proteins</topic><topic>Biological and medical sciences</topic><topic>Carrier Proteins</topic><topic>Cells</topic><topic>Cells (Biology)</topic><topic>Chromatography, Affinity</topic><topic>DNA</topic><topic>DNA mismatch repair</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA-Binding Proteins</topic><topic>Eukaryotes</topic><topic>Eukaryotic cells</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - metabolism</topic><topic>Gels</topic><topic>Genetic aspects</topic><topic>Genetic mutation</topic><topic>Hereditary nonpolyposis colorectal neoplasms</topic><topic>Microsatellites</topic><topic>Models, Genetic</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis. Repair</topic><topic>MutL Protein Homolog 1</topic><topic>MutL Proteins</topic><topic>MutS Homolog 2 Protein</topic><topic>Nucleic Acid Heteroduplexes - metabolism</topic><topic>Plasmids</topic><topic>Polymerase chain reaction</topic><topic>proteinas</topic><topic>proteinas aglutinantes</topic><topic>proteine</topic><topic>proteine de liaison</topic><topic>proteins</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Tumors</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prolla, Tomas A.</creatorcontrib><creatorcontrib>Pang, Qishen</creatorcontrib><creatorcontrib>Alani, Eric</creatorcontrib><creatorcontrib>Kolodner, Richard D.</creatorcontrib><creatorcontrib>Liskay, R. Micheal</creatorcontrib><creatorcontrib>Yale University School of Medicine, New Haven, CT</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Biography (Gale in Context)</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prolla, Tomas A.</au><au>Pang, Qishen</au><au>Alani, Eric</au><au>Kolodner, Richard D.</au><au>Liskay, R. Micheal</au><aucorp>Yale University School of Medicine, New Haven, CT</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1994-08-19</date><risdate>1994</risdate><volume>265</volume><issue>5175</issue><spage>1091</spage><epage>1093</epage><pages>1091-1093</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The discovery that mutations in DNA mismatch repair genes can cause hereditary colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experiments revealed that the yeast MLH1 and PMS1 proteins physically associate, possibly forming a heterodimer, and that MLH1 and PMS1 act in concert to bind a MSH2-heteroduplex complex containing a G-T mismatch. Thus, MSH2, MLH1, and PMS1 are likely to form a ternary complex during the initiation of eukaryotic DNA mismatch repair.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>8066446</pmid><doi>10.1126/science.8066446</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1994-08, Vol.265 (5175), p.1091-1093 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_76671590 |
source | American Association for the Advancement of Science; MEDLINE; JSTOR |
subjects | Adaptor Proteins, Signal Transducing adn binding proteins Biological and medical sciences Carrier Proteins Cells Cells (Biology) Chromatography, Affinity DNA DNA mismatch repair DNA Repair DNA Replication DNA, Fungal - metabolism DNA-Binding Proteins Eukaryotes Eukaryotic cells Fundamental and applied biological sciences. Psychology Fungal Proteins - metabolism Gels Genetic aspects Genetic mutation Hereditary nonpolyposis colorectal neoplasms Microsatellites Models, Genetic Molecular and cellular biology Molecular genetics Mutagenesis. Repair MutL Protein Homolog 1 MutL Proteins MutS Homolog 2 Protein Nucleic Acid Heteroduplexes - metabolism Plasmids Polymerase chain reaction proteinas proteinas aglutinantes proteine proteine de liaison proteins Recombinant Fusion Proteins - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins Tumors Yeasts |
title | MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MLH1,%20PMS1,%20and%20MSH2%20interactions%20during%20the%20initiation%20of%20DNA%20mismatch%20repair%20in%20yeast&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Prolla,%20Tomas%20A.&rft.aucorp=Yale%20University%20School%20of%20Medicine,%20New%20Haven,%20CT&rft.date=1994-08-19&rft.volume=265&rft.issue=5175&rft.spage=1091&rft.epage=1093&rft.pages=1091-1093&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.8066446&rft_dat=%3Cgale_proqu%3EA15752986%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16911926&rft_id=info:pmid/8066446&rft_galeid=A15752986&rft_jstor_id=2884230&rfr_iscdi=true |