Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics
We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other dynamical systems. We simultaneously develop the general mathematical theory and a discussion of some illustrative examples. After developing an appropriate formulation for the dynamics, we defin...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 1994-02, Vol.343 (1305), p.261-283 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 1305 |
container_start_page | 261 |
container_title | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
container_volume | 343 |
creator | Rand, D. A. Wilson, H. B. McGlade, J. M. |
description | We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other dynamical systems. We simultaneously develop the general mathematical theory and a discussion of some illustrative examples. After developing an appropriate formulation for the dynamics, we define the notion of an evolutionary stable attractor (ESA) and give some samples of ESAS with simple and complex dynamics. We discuss the relationship between our theory and that for ESSS in classical linear evolutionary game theory by considering some dynamical extensions. We then introduce and develop our main mathematical tool, the invasion exponent. This allows analytical and numerical analysis of relatively complex situations, such as the coevolution of multiple species with chaotic population dynamics. Using this, we introduce the notion of differential selective pressure which for generic systems is nonlinear and characterizes internal ESAS. We use this to analytically determine the ESAS in our previous examples. Then we introduce the phenotype dynamics which describe how a population with a distribution of phenotypes changes in time with or without mutations. We discuss the relation between the asymptotic states of this and the ESAS. Finally, we use our mathematical formulation to analyse a non-reproductive form of evolution in which various learning rules compete and evolve. We give a very tentative economic application which has interesting ESAS and phenotype dynamics. |
doi_str_mv | 10.1098/rstb.1994.0025 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_76669947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>55815</jstor_id><sourcerecordid>55815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-a857dad6e25fc809dad90fd2707b4c07c84e82241833f84d290bdf136d6cf8443</originalsourceid><addsrcrecordid>eNp9kt1v0zAUxSMEGmPwygMSUiQknkix48_sBY1R2KRpVKzwarmOQ13SONhOWfjrcZpSNhB7yo3u755zfewkeQrBBIKCv3Y-LCawKPAEgJzcSw4hZjDLCwbuJ4egoHnGMaIPk0ferwAABWH4IDnggFIIyGGi3vWNXBvlU9mU6XRj6y4Y2xz_KaUzdZ9eBbmodXoSgpMqWOdfpefNRvoIpNPr1ja6CaPGbKkbG_pWp7-lHycPKll7_WT3PUo-v5_OT8-yi48fzk9PLjJFCA2Z5ISVsqQ6J5XioIh1AaoyZ4AtsAJMcax5nmPIEao4LvMCLMoKIlpSFf8xOkpejrqts9877YNYG690XctG284LRimNQbEIvvgLXNnONXE3ARHgOc8hpJGajJRy1nunK9E6s5auFxCIIXsxZC-G7MWQfRx4vpPtFmtd7vFd2LGPxr6zffSyyujQ37D-n6q_a-rT1fxthMEGYWTi9kQAjqIbHsqfpt3KDYCIgDDed1pssds2_7o-G11XPt72_iiEcDg0s7FpfNDX-6Z03wRliBHxhWMxPysuZ5cciVnk34z80nxd_jBOi1tn2Vor24T4hrZbbvfLKRRVV9eiLauoAO5UsH0bNW7Ool8JRPax</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308282116</pqid></control><display><type>article</type><title>Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics</title><source>MEDLINE</source><source>JSTOR</source><source>Periodicals Index Online</source><creator>Rand, D. A. ; Wilson, H. B. ; McGlade, J. M.</creator><creatorcontrib>Rand, D. A. ; Wilson, H. B. ; McGlade, J. M.</creatorcontrib><description>We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other dynamical systems. We simultaneously develop the general mathematical theory and a discussion of some illustrative examples. After developing an appropriate formulation for the dynamics, we define the notion of an evolutionary stable attractor (ESA) and give some samples of ESAS with simple and complex dynamics. We discuss the relationship between our theory and that for ESSS in classical linear evolutionary game theory by considering some dynamical extensions. We then introduce and develop our main mathematical tool, the invasion exponent. This allows analytical and numerical analysis of relatively complex situations, such as the coevolution of multiple species with chaotic population dynamics. Using this, we introduce the notion of differential selective pressure which for generic systems is nonlinear and characterizes internal ESAS. We use this to analytically determine the ESAS in our previous examples. Then we introduce the phenotype dynamics which describe how a population with a distribution of phenotypes changes in time with or without mutations. We discuss the relation between the asymptotic states of this and the ESAS. Finally, we use our mathematical formulation to analyse a non-reproductive form of evolution in which various learning rules compete and evolve. We give a very tentative economic application which has interesting ESAS and phenotype dynamics.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.1994.0025</identifier><identifier>PMID: 8066105</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Animals ; Biological Evolution ; Ecological competition ; Evolution ; Game Theory ; Genetic vectors ; Kronecker delta function ; Mathematical independent variables ; Mathematics ; Models, Genetic ; Models, Theoretical ; Phenotype ; Phenotypes ; Population Dynamics ; Population mean ; Predators ; Predatory Behavior</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 1994-02, Vol.343 (1305), p.261-283</ispartof><rights>Copyright 1994 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-a857dad6e25fc809dad90fd2707b4c07c84e82241833f84d290bdf136d6cf8443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/55815$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/55815$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27846,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8066105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rand, D. A.</creatorcontrib><creatorcontrib>Wilson, H. B.</creatorcontrib><creatorcontrib>McGlade, J. M.</creatorcontrib><title>Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. Lond. B</addtitle><description>We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other dynamical systems. We simultaneously develop the general mathematical theory and a discussion of some illustrative examples. After developing an appropriate formulation for the dynamics, we define the notion of an evolutionary stable attractor (ESA) and give some samples of ESAS with simple and complex dynamics. We discuss the relationship between our theory and that for ESSS in classical linear evolutionary game theory by considering some dynamical extensions. We then introduce and develop our main mathematical tool, the invasion exponent. This allows analytical and numerical analysis of relatively complex situations, such as the coevolution of multiple species with chaotic population dynamics. Using this, we introduce the notion of differential selective pressure which for generic systems is nonlinear and characterizes internal ESAS. We use this to analytically determine the ESAS in our previous examples. Then we introduce the phenotype dynamics which describe how a population with a distribution of phenotypes changes in time with or without mutations. We discuss the relation between the asymptotic states of this and the ESAS. Finally, we use our mathematical formulation to analyse a non-reproductive form of evolution in which various learning rules compete and evolve. We give a very tentative economic application which has interesting ESAS and phenotype dynamics.</description><subject>Animals</subject><subject>Biological Evolution</subject><subject>Ecological competition</subject><subject>Evolution</subject><subject>Game Theory</subject><subject>Genetic vectors</subject><subject>Kronecker delta function</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>Models, Genetic</subject><subject>Models, Theoretical</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Population Dynamics</subject><subject>Population mean</subject><subject>Predators</subject><subject>Predatory Behavior</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>K30</sourceid><recordid>eNp9kt1v0zAUxSMEGmPwygMSUiQknkix48_sBY1R2KRpVKzwarmOQ13SONhOWfjrcZpSNhB7yo3u755zfewkeQrBBIKCv3Y-LCawKPAEgJzcSw4hZjDLCwbuJ4egoHnGMaIPk0ferwAABWH4IDnggFIIyGGi3vWNXBvlU9mU6XRj6y4Y2xz_KaUzdZ9eBbmodXoSgpMqWOdfpefNRvoIpNPr1ja6CaPGbKkbG_pWp7-lHycPKll7_WT3PUo-v5_OT8-yi48fzk9PLjJFCA2Z5ISVsqQ6J5XioIh1AaoyZ4AtsAJMcax5nmPIEao4LvMCLMoKIlpSFf8xOkpejrqts9877YNYG690XctG284LRimNQbEIvvgLXNnONXE3ARHgOc8hpJGajJRy1nunK9E6s5auFxCIIXsxZC-G7MWQfRx4vpPtFmtd7vFd2LGPxr6zffSyyujQ37D-n6q_a-rT1fxthMEGYWTi9kQAjqIbHsqfpt3KDYCIgDDed1pssds2_7o-G11XPt72_iiEcDg0s7FpfNDX-6Z03wRliBHxhWMxPysuZ5cciVnk34z80nxd_jBOi1tn2Vor24T4hrZbbvfLKRRVV9eiLauoAO5UsH0bNW7Ool8JRPax</recordid><startdate>19940228</startdate><enddate>19940228</enddate><creator>Rand, D. A.</creator><creator>Wilson, H. B.</creator><creator>McGlade, J. M.</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ICWRT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7X8</scope></search><sort><creationdate>19940228</creationdate><title>Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics</title><author>Rand, D. A. ; Wilson, H. B. ; McGlade, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-a857dad6e25fc809dad90fd2707b4c07c84e82241833f84d290bdf136d6cf8443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Biological Evolution</topic><topic>Ecological competition</topic><topic>Evolution</topic><topic>Game Theory</topic><topic>Genetic vectors</topic><topic>Kronecker delta function</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>Models, Genetic</topic><topic>Models, Theoretical</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Population Dynamics</topic><topic>Population mean</topic><topic>Predators</topic><topic>Predatory Behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rand, D. A.</creatorcontrib><creatorcontrib>Wilson, H. B.</creatorcontrib><creatorcontrib>McGlade, J. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 28</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rand, D. A.</au><au>Wilson, H. B.</au><au>McGlade, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Phil. Trans. R. Soc. Lond. B</addtitle><date>1994-02-28</date><risdate>1994</risdate><volume>343</volume><issue>1305</issue><spage>261</spage><epage>283</epage><pages>261-283</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other dynamical systems. We simultaneously develop the general mathematical theory and a discussion of some illustrative examples. After developing an appropriate formulation for the dynamics, we define the notion of an evolutionary stable attractor (ESA) and give some samples of ESAS with simple and complex dynamics. We discuss the relationship between our theory and that for ESSS in classical linear evolutionary game theory by considering some dynamical extensions. We then introduce and develop our main mathematical tool, the invasion exponent. This allows analytical and numerical analysis of relatively complex situations, such as the coevolution of multiple species with chaotic population dynamics. Using this, we introduce the notion of differential selective pressure which for generic systems is nonlinear and characterizes internal ESAS. We use this to analytically determine the ESAS in our previous examples. Then we introduce the phenotype dynamics which describe how a population with a distribution of phenotypes changes in time with or without mutations. We discuss the relation between the asymptotic states of this and the ESAS. Finally, we use our mathematical formulation to analyse a non-reproductive form of evolution in which various learning rules compete and evolve. We give a very tentative economic application which has interesting ESAS and phenotype dynamics.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>8066105</pmid><doi>10.1098/rstb.1994.0025</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8436 |
ispartof | Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 1994-02, Vol.343 (1305), p.261-283 |
issn | 0962-8436 1471-2970 |
language | eng |
recordid | cdi_proquest_miscellaneous_76669947 |
source | MEDLINE; JSTOR; Periodicals Index Online |
subjects | Animals Biological Evolution Ecological competition Evolution Game Theory Genetic vectors Kronecker delta function Mathematical independent variables Mathematics Models, Genetic Models, Theoretical Phenotype Phenotypes Population Dynamics Population mean Predators Predatory Behavior |
title | Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20Evolution:%20Evolutionarily%20Stable%20Attractors,%20Invasion%20Exponents%20and%20Phenotype%20Dynamics&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Rand,%20D.%20A.&rft.date=1994-02-28&rft.volume=343&rft.issue=1305&rft.spage=261&rft.epage=283&rft.pages=261-283&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.1994.0025&rft_dat=%3Cjstor_proqu%3E55815%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308282116&rft_id=info:pmid/8066105&rft_jstor_id=55815&rfr_iscdi=true |