Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics

We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other dynamical systems. We simultaneously develop the general mathematical theory and a discussion of some illustrative examples. After developing an appropriate formulation for the dynamics, we defin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 1994-02, Vol.343 (1305), p.261-283
Hauptverfasser: Rand, D. A., Wilson, H. B., McGlade, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 1305
container_start_page 261
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 343
creator Rand, D. A.
Wilson, H. B.
McGlade, J. M.
description We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other dynamical systems. We simultaneously develop the general mathematical theory and a discussion of some illustrative examples. After developing an appropriate formulation for the dynamics, we define the notion of an evolutionary stable attractor (ESA) and give some samples of ESAS with simple and complex dynamics. We discuss the relationship between our theory and that for ESSS in classical linear evolutionary game theory by considering some dynamical extensions. We then introduce and develop our main mathematical tool, the invasion exponent. This allows analytical and numerical analysis of relatively complex situations, such as the coevolution of multiple species with chaotic population dynamics. Using this, we introduce the notion of differential selective pressure which for generic systems is nonlinear and characterizes internal ESAS. We use this to analytically determine the ESAS in our previous examples. Then we introduce the phenotype dynamics which describe how a population with a distribution of phenotypes changes in time with or without mutations. We discuss the relation between the asymptotic states of this and the ESAS. Finally, we use our mathematical formulation to analyse a non-reproductive form of evolution in which various learning rules compete and evolve. We give a very tentative economic application which has interesting ESAS and phenotype dynamics.
doi_str_mv 10.1098/rstb.1994.0025
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_76669947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>55815</jstor_id><sourcerecordid>55815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-a857dad6e25fc809dad90fd2707b4c07c84e82241833f84d290bdf136d6cf8443</originalsourceid><addsrcrecordid>eNp9kt1v0zAUxSMEGmPwygMSUiQknkix48_sBY1R2KRpVKzwarmOQ13SONhOWfjrcZpSNhB7yo3u755zfewkeQrBBIKCv3Y-LCawKPAEgJzcSw4hZjDLCwbuJ4egoHnGMaIPk0ferwAABWH4IDnggFIIyGGi3vWNXBvlU9mU6XRj6y4Y2xz_KaUzdZ9eBbmodXoSgpMqWOdfpefNRvoIpNPr1ja6CaPGbKkbG_pWp7-lHycPKll7_WT3PUo-v5_OT8-yi48fzk9PLjJFCA2Z5ISVsqQ6J5XioIh1AaoyZ4AtsAJMcax5nmPIEao4LvMCLMoKIlpSFf8xOkpejrqts9877YNYG690XctG284LRimNQbEIvvgLXNnONXE3ARHgOc8hpJGajJRy1nunK9E6s5auFxCIIXsxZC-G7MWQfRx4vpPtFmtd7vFd2LGPxr6zffSyyujQ37D-n6q_a-rT1fxthMEGYWTi9kQAjqIbHsqfpt3KDYCIgDDed1pssds2_7o-G11XPt72_iiEcDg0s7FpfNDX-6Z03wRliBHxhWMxPysuZ5cciVnk34z80nxd_jBOi1tn2Vor24T4hrZbbvfLKRRVV9eiLauoAO5UsH0bNW7Ool8JRPax</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308282116</pqid></control><display><type>article</type><title>Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics</title><source>MEDLINE</source><source>JSTOR</source><source>Periodicals Index Online</source><creator>Rand, D. A. ; Wilson, H. B. ; McGlade, J. M.</creator><creatorcontrib>Rand, D. A. ; Wilson, H. B. ; McGlade, J. M.</creatorcontrib><description>We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other dynamical systems. We simultaneously develop the general mathematical theory and a discussion of some illustrative examples. After developing an appropriate formulation for the dynamics, we define the notion of an evolutionary stable attractor (ESA) and give some samples of ESAS with simple and complex dynamics. We discuss the relationship between our theory and that for ESSS in classical linear evolutionary game theory by considering some dynamical extensions. We then introduce and develop our main mathematical tool, the invasion exponent. This allows analytical and numerical analysis of relatively complex situations, such as the coevolution of multiple species with chaotic population dynamics. Using this, we introduce the notion of differential selective pressure which for generic systems is nonlinear and characterizes internal ESAS. We use this to analytically determine the ESAS in our previous examples. Then we introduce the phenotype dynamics which describe how a population with a distribution of phenotypes changes in time with or without mutations. We discuss the relation between the asymptotic states of this and the ESAS. Finally, we use our mathematical formulation to analyse a non-reproductive form of evolution in which various learning rules compete and evolve. We give a very tentative economic application which has interesting ESAS and phenotype dynamics.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.1994.0025</identifier><identifier>PMID: 8066105</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Animals ; Biological Evolution ; Ecological competition ; Evolution ; Game Theory ; Genetic vectors ; Kronecker delta function ; Mathematical independent variables ; Mathematics ; Models, Genetic ; Models, Theoretical ; Phenotype ; Phenotypes ; Population Dynamics ; Population mean ; Predators ; Predatory Behavior</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 1994-02, Vol.343 (1305), p.261-283</ispartof><rights>Copyright 1994 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-a857dad6e25fc809dad90fd2707b4c07c84e82241833f84d290bdf136d6cf8443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/55815$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/55815$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27846,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8066105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rand, D. A.</creatorcontrib><creatorcontrib>Wilson, H. B.</creatorcontrib><creatorcontrib>McGlade, J. M.</creatorcontrib><title>Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. Lond. B</addtitle><description>We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other dynamical systems. We simultaneously develop the general mathematical theory and a discussion of some illustrative examples. After developing an appropriate formulation for the dynamics, we define the notion of an evolutionary stable attractor (ESA) and give some samples of ESAS with simple and complex dynamics. We discuss the relationship between our theory and that for ESSS in classical linear evolutionary game theory by considering some dynamical extensions. We then introduce and develop our main mathematical tool, the invasion exponent. This allows analytical and numerical analysis of relatively complex situations, such as the coevolution of multiple species with chaotic population dynamics. Using this, we introduce the notion of differential selective pressure which for generic systems is nonlinear and characterizes internal ESAS. We use this to analytically determine the ESAS in our previous examples. Then we introduce the phenotype dynamics which describe how a population with a distribution of phenotypes changes in time with or without mutations. We discuss the relation between the asymptotic states of this and the ESAS. Finally, we use our mathematical formulation to analyse a non-reproductive form of evolution in which various learning rules compete and evolve. We give a very tentative economic application which has interesting ESAS and phenotype dynamics.</description><subject>Animals</subject><subject>Biological Evolution</subject><subject>Ecological competition</subject><subject>Evolution</subject><subject>Game Theory</subject><subject>Genetic vectors</subject><subject>Kronecker delta function</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>Models, Genetic</subject><subject>Models, Theoretical</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Population Dynamics</subject><subject>Population mean</subject><subject>Predators</subject><subject>Predatory Behavior</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>K30</sourceid><recordid>eNp9kt1v0zAUxSMEGmPwygMSUiQknkix48_sBY1R2KRpVKzwarmOQ13SONhOWfjrcZpSNhB7yo3u755zfewkeQrBBIKCv3Y-LCawKPAEgJzcSw4hZjDLCwbuJ4egoHnGMaIPk0ferwAABWH4IDnggFIIyGGi3vWNXBvlU9mU6XRj6y4Y2xz_KaUzdZ9eBbmodXoSgpMqWOdfpefNRvoIpNPr1ja6CaPGbKkbG_pWp7-lHycPKll7_WT3PUo-v5_OT8-yi48fzk9PLjJFCA2Z5ISVsqQ6J5XioIh1AaoyZ4AtsAJMcax5nmPIEao4LvMCLMoKIlpSFf8xOkpejrqts9877YNYG690XctG284LRimNQbEIvvgLXNnONXE3ARHgOc8hpJGajJRy1nunK9E6s5auFxCIIXsxZC-G7MWQfRx4vpPtFmtd7vFd2LGPxr6zffSyyujQ37D-n6q_a-rT1fxthMEGYWTi9kQAjqIbHsqfpt3KDYCIgDDed1pssds2_7o-G11XPt72_iiEcDg0s7FpfNDX-6Z03wRliBHxhWMxPysuZ5cciVnk34z80nxd_jBOi1tn2Vor24T4hrZbbvfLKRRVV9eiLauoAO5UsH0bNW7Ool8JRPax</recordid><startdate>19940228</startdate><enddate>19940228</enddate><creator>Rand, D. A.</creator><creator>Wilson, H. B.</creator><creator>McGlade, J. M.</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ICWRT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7X8</scope></search><sort><creationdate>19940228</creationdate><title>Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics</title><author>Rand, D. A. ; Wilson, H. B. ; McGlade, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-a857dad6e25fc809dad90fd2707b4c07c84e82241833f84d290bdf136d6cf8443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Biological Evolution</topic><topic>Ecological competition</topic><topic>Evolution</topic><topic>Game Theory</topic><topic>Genetic vectors</topic><topic>Kronecker delta function</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>Models, Genetic</topic><topic>Models, Theoretical</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Population Dynamics</topic><topic>Population mean</topic><topic>Predators</topic><topic>Predatory Behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rand, D. A.</creatorcontrib><creatorcontrib>Wilson, H. B.</creatorcontrib><creatorcontrib>McGlade, J. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 28</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rand, D. A.</au><au>Wilson, H. B.</au><au>McGlade, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Phil. Trans. R. Soc. Lond. B</addtitle><date>1994-02-28</date><risdate>1994</risdate><volume>343</volume><issue>1305</issue><spage>261</spage><epage>283</epage><pages>261-283</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other dynamical systems. We simultaneously develop the general mathematical theory and a discussion of some illustrative examples. After developing an appropriate formulation for the dynamics, we define the notion of an evolutionary stable attractor (ESA) and give some samples of ESAS with simple and complex dynamics. We discuss the relationship between our theory and that for ESSS in classical linear evolutionary game theory by considering some dynamical extensions. We then introduce and develop our main mathematical tool, the invasion exponent. This allows analytical and numerical analysis of relatively complex situations, such as the coevolution of multiple species with chaotic population dynamics. Using this, we introduce the notion of differential selective pressure which for generic systems is nonlinear and characterizes internal ESAS. We use this to analytically determine the ESAS in our previous examples. Then we introduce the phenotype dynamics which describe how a population with a distribution of phenotypes changes in time with or without mutations. We discuss the relation between the asymptotic states of this and the ESAS. Finally, we use our mathematical formulation to analyse a non-reproductive form of evolution in which various learning rules compete and evolve. We give a very tentative economic application which has interesting ESAS and phenotype dynamics.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>8066105</pmid><doi>10.1098/rstb.1994.0025</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 1994-02, Vol.343 (1305), p.261-283
issn 0962-8436
1471-2970
language eng
recordid cdi_proquest_miscellaneous_76669947
source MEDLINE; JSTOR; Periodicals Index Online
subjects Animals
Biological Evolution
Ecological competition
Evolution
Game Theory
Genetic vectors
Kronecker delta function
Mathematical independent variables
Mathematics
Models, Genetic
Models, Theoretical
Phenotype
Phenotypes
Population Dynamics
Population mean
Predators
Predatory Behavior
title Dynamics and Evolution: Evolutionarily Stable Attractors, Invasion Exponents and Phenotype Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20Evolution:%20Evolutionarily%20Stable%20Attractors,%20Invasion%20Exponents%20and%20Phenotype%20Dynamics&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Rand,%20D.%20A.&rft.date=1994-02-28&rft.volume=343&rft.issue=1305&rft.spage=261&rft.epage=283&rft.pages=261-283&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.1994.0025&rft_dat=%3Cjstor_proqu%3E55815%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308282116&rft_id=info:pmid/8066105&rft_jstor_id=55815&rfr_iscdi=true