Reduced phase encoding in spectroscopic imaging

The effect of different spatial‐encoding (k‐space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k‐space functions, symmetrically distributed. These studies examine the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 1994-06, Vol.31 (6), p.645-651
Hauptverfasser: Maudsley, Andrew A., Matson, G. B., Hugg, J. W., Weiner, M. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 6
container_start_page 645
container_title Magnetic resonance in medicine
container_volume 31
creator Maudsley, Andrew A.
Matson, G. B.
Hugg, J. W.
Weiner, M. W.
description The effect of different spatial‐encoding (k‐space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k‐space functions, symmetrically distributed. These studies examine the conventional k‐space distribution with spherical distribution, and 1/2 k‐space acquisition, using computer simulation studies of the MRSI acquisition for three spatial dimensions and experimental results. Results compare the spatial response function, Gibbs ringing effects, and signal contamination for different spatial‐encoding distribution functions. Results indicate that spherical encoding, in comparison with cubic encoding, results in a modest improvement of the re sponse function with approximately equivalent spatial resolution for the same acquisition time. For spin‐echo acquired data, reduced acquisition times can readily be obtained using 1/2 k‐space methods, with a concomitant reduction in signal to noise ratio.
doi_str_mv 10.1002/mrm.1910310610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76654134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76654134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4070-a78c5509cac5b32a7f75e64184c49e1871767377ba859d29e71f504b4441375b3</originalsourceid><addsrcrecordid>eNqFkL1PwzAUxC0EKqWwsiFlQGxpnxM7jkdUQUFqQVRAR8txnGLIF3Ej6H-Pq0RFTExvuN_dOx1C5xjGGCCYFE0xxhxDiCHCcICGmAaBH1BODtEQGAE_xJwcoxNr3wGAc0YGaBADZTFmQzRZ6rRVOvXqN2m1p0tVpaZce6b0bK3VpqmsqmqjPFPItRNO0VEmc6vP-jtCL7c3z9M7f_44u59ez31FgIEvWawoBa6kokkYSJYxqiOCY6II1zhmmEUsZCyRMeVpwDXDGQWSEEJwyJxlhK663LqpPlttN6IwVuk8l6WuWitYFFGHEgeOO1C5qrbRmagb17XZCgxit5BwC4nfhZzhok9uk0Kne7yfxOmXvS6tknnWyFIZu8cIcBzBLoZ32JfJ9fafp2KxXPyp4HdeYzf6e--VzYfYrULF6mEmXp9WfEbjuaDhD3L8i3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76654134</pqid></control><display><type>article</type><title>Reduced phase encoding in spectroscopic imaging</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Maudsley, Andrew A. ; Matson, G. B. ; Hugg, J. W. ; Weiner, M. W.</creator><creatorcontrib>Maudsley, Andrew A. ; Matson, G. B. ; Hugg, J. W. ; Weiner, M. W.</creatorcontrib><description>The effect of different spatial‐encoding (k‐space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k‐space functions, symmetrically distributed. These studies examine the conventional k‐space distribution with spherical distribution, and 1/2 k‐space acquisition, using computer simulation studies of the MRSI acquisition for three spatial dimensions and experimental results. Results compare the spatial response function, Gibbs ringing effects, and signal contamination for different spatial‐encoding distribution functions. Results indicate that spherical encoding, in comparison with cubic encoding, results in a modest improvement of the re sponse function with approximately equivalent spatial resolution for the same acquisition time. For spin‐echo acquired data, reduced acquisition times can readily be obtained using 1/2 k‐space methods, with a concomitant reduction in signal to noise ratio.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.1910310610</identifier><identifier>PMID: 8057817</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Baltimore: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Aspartic Acid - analogs &amp; derivatives ; Aspartic Acid - metabolism ; Biological and medical sciences ; Brain - anatomy &amp; histology ; Brain - metabolism ; Choline - metabolism ; Computer Simulation ; Creatine - metabolism ; Fourier Analysis ; Hydrogen ; Image Enhancement - methods ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; k-space ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Medical sciences ; Miscellaneous. Technology ; Models, Structural ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Phosphates - metabolism ; Phosphorus ; Rats ; spectroscopic imaging</subject><ispartof>Magnetic resonance in medicine, 1994-06, Vol.31 (6), p.645-651</ispartof><rights>Copyright © 1994 Wiley‐Liss, Inc., A Wiley Company</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4070-a78c5509cac5b32a7f75e64184c49e1871767377ba859d29e71f504b4441375b3</citedby><cites>FETCH-LOGICAL-c4070-a78c5509cac5b32a7f75e64184c49e1871767377ba859d29e71f504b4441375b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.1910310610$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.1910310610$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4091600$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8057817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maudsley, Andrew A.</creatorcontrib><creatorcontrib>Matson, G. B.</creatorcontrib><creatorcontrib>Hugg, J. W.</creatorcontrib><creatorcontrib>Weiner, M. W.</creatorcontrib><title>Reduced phase encoding in spectroscopic imaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>The effect of different spatial‐encoding (k‐space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k‐space functions, symmetrically distributed. These studies examine the conventional k‐space distribution with spherical distribution, and 1/2 k‐space acquisition, using computer simulation studies of the MRSI acquisition for three spatial dimensions and experimental results. Results compare the spatial response function, Gibbs ringing effects, and signal contamination for different spatial‐encoding distribution functions. Results indicate that spherical encoding, in comparison with cubic encoding, results in a modest improvement of the re sponse function with approximately equivalent spatial resolution for the same acquisition time. For spin‐echo acquired data, reduced acquisition times can readily be obtained using 1/2 k‐space methods, with a concomitant reduction in signal to noise ratio.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Aspartic Acid - analogs &amp; derivatives</subject><subject>Aspartic Acid - metabolism</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - metabolism</subject><subject>Choline - metabolism</subject><subject>Computer Simulation</subject><subject>Creatine - metabolism</subject><subject>Fourier Analysis</subject><subject>Hydrogen</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>k-space</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Models, Structural</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Phosphates - metabolism</subject><subject>Phosphorus</subject><subject>Rats</subject><subject>spectroscopic imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1PwzAUxC0EKqWwsiFlQGxpnxM7jkdUQUFqQVRAR8txnGLIF3Ej6H-Pq0RFTExvuN_dOx1C5xjGGCCYFE0xxhxDiCHCcICGmAaBH1BODtEQGAE_xJwcoxNr3wGAc0YGaBADZTFmQzRZ6rRVOvXqN2m1p0tVpaZce6b0bK3VpqmsqmqjPFPItRNO0VEmc6vP-jtCL7c3z9M7f_44u59ez31FgIEvWawoBa6kokkYSJYxqiOCY6II1zhmmEUsZCyRMeVpwDXDGQWSEEJwyJxlhK663LqpPlttN6IwVuk8l6WuWitYFFGHEgeOO1C5qrbRmagb17XZCgxit5BwC4nfhZzhok9uk0Kne7yfxOmXvS6tknnWyFIZu8cIcBzBLoZ32JfJ9fafp2KxXPyp4HdeYzf6e--VzYfYrULF6mEmXp9WfEbjuaDhD3L8i3c</recordid><startdate>199406</startdate><enddate>199406</enddate><creator>Maudsley, Andrew A.</creator><creator>Matson, G. B.</creator><creator>Hugg, J. W.</creator><creator>Weiner, M. W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Williams &amp; Wilkins</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199406</creationdate><title>Reduced phase encoding in spectroscopic imaging</title><author>Maudsley, Andrew A. ; Matson, G. B. ; Hugg, J. W. ; Weiner, M. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4070-a78c5509cac5b32a7f75e64184c49e1871767377ba859d29e71f504b4441375b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Aspartic Acid - analogs &amp; derivatives</topic><topic>Aspartic Acid - metabolism</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - metabolism</topic><topic>Choline - metabolism</topic><topic>Computer Simulation</topic><topic>Creatine - metabolism</topic><topic>Fourier Analysis</topic><topic>Hydrogen</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>k-space</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Models, Structural</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Phosphates - metabolism</topic><topic>Phosphorus</topic><topic>Rats</topic><topic>spectroscopic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maudsley, Andrew A.</creatorcontrib><creatorcontrib>Matson, G. B.</creatorcontrib><creatorcontrib>Hugg, J. W.</creatorcontrib><creatorcontrib>Weiner, M. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maudsley, Andrew A.</au><au>Matson, G. B.</au><au>Hugg, J. W.</au><au>Weiner, M. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced phase encoding in spectroscopic imaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>1994-06</date><risdate>1994</risdate><volume>31</volume><issue>6</issue><spage>645</spage><epage>651</epage><pages>645-651</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>The effect of different spatial‐encoding (k‐space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k‐space functions, symmetrically distributed. These studies examine the conventional k‐space distribution with spherical distribution, and 1/2 k‐space acquisition, using computer simulation studies of the MRSI acquisition for three spatial dimensions and experimental results. Results compare the spatial response function, Gibbs ringing effects, and signal contamination for different spatial‐encoding distribution functions. Results indicate that spherical encoding, in comparison with cubic encoding, results in a modest improvement of the re sponse function with approximately equivalent spatial resolution for the same acquisition time. For spin‐echo acquired data, reduced acquisition times can readily be obtained using 1/2 k‐space methods, with a concomitant reduction in signal to noise ratio.</abstract><cop>Baltimore</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>8057817</pmid><doi>10.1002/mrm.1910310610</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 1994-06, Vol.31 (6), p.645-651
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_76654134
source MEDLINE; Wiley Online Library
subjects Adenosine Triphosphate - metabolism
Animals
Aspartic Acid - analogs & derivatives
Aspartic Acid - metabolism
Biological and medical sciences
Brain - anatomy & histology
Brain - metabolism
Choline - metabolism
Computer Simulation
Creatine - metabolism
Fourier Analysis
Hydrogen
Image Enhancement - methods
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
k-space
Magnetic Resonance Imaging - methods
Magnetic Resonance Spectroscopy - methods
Medical sciences
Miscellaneous. Technology
Models, Structural
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Phosphates - metabolism
Phosphorus
Rats
spectroscopic imaging
title Reduced phase encoding in spectroscopic imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20phase%20encoding%20in%20spectroscopic%20imaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Maudsley,%20Andrew%20A.&rft.date=1994-06&rft.volume=31&rft.issue=6&rft.spage=645&rft.epage=651&rft.pages=645-651&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.1910310610&rft_dat=%3Cproquest_cross%3E76654134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76654134&rft_id=info:pmid/8057817&rfr_iscdi=true