Reduced phase encoding in spectroscopic imaging
The effect of different spatial‐encoding (k‐space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k‐space functions, symmetrically distributed. These studies examine the co...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 1994-06, Vol.31 (6), p.645-651 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 651 |
---|---|
container_issue | 6 |
container_start_page | 645 |
container_title | Magnetic resonance in medicine |
container_volume | 31 |
creator | Maudsley, Andrew A. Matson, G. B. Hugg, J. W. Weiner, M. W. |
description | The effect of different spatial‐encoding (k‐space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k‐space functions, symmetrically distributed. These studies examine the conventional k‐space distribution with spherical distribution, and 1/2 k‐space acquisition, using computer simulation studies of the MRSI acquisition for three spatial dimensions and experimental results. Results compare the spatial response function, Gibbs ringing effects, and signal contamination for different spatial‐encoding distribution functions. Results indicate that spherical encoding, in comparison with cubic encoding, results in a modest improvement of the re sponse function with approximately equivalent spatial resolution for the same acquisition time. For spin‐echo acquired data, reduced acquisition times can readily be obtained using 1/2 k‐space methods, with a concomitant reduction in signal to noise ratio. |
doi_str_mv | 10.1002/mrm.1910310610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76654134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76654134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4070-a78c5509cac5b32a7f75e64184c49e1871767377ba859d29e71f504b4441375b3</originalsourceid><addsrcrecordid>eNqFkL1PwzAUxC0EKqWwsiFlQGxpnxM7jkdUQUFqQVRAR8txnGLIF3Ej6H-Pq0RFTExvuN_dOx1C5xjGGCCYFE0xxhxDiCHCcICGmAaBH1BODtEQGAE_xJwcoxNr3wGAc0YGaBADZTFmQzRZ6rRVOvXqN2m1p0tVpaZce6b0bK3VpqmsqmqjPFPItRNO0VEmc6vP-jtCL7c3z9M7f_44u59ez31FgIEvWawoBa6kokkYSJYxqiOCY6II1zhmmEUsZCyRMeVpwDXDGQWSEEJwyJxlhK663LqpPlttN6IwVuk8l6WuWitYFFGHEgeOO1C5qrbRmagb17XZCgxit5BwC4nfhZzhok9uk0Kne7yfxOmXvS6tknnWyFIZu8cIcBzBLoZ32JfJ9fafp2KxXPyp4HdeYzf6e--VzYfYrULF6mEmXp9WfEbjuaDhD3L8i3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76654134</pqid></control><display><type>article</type><title>Reduced phase encoding in spectroscopic imaging</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Maudsley, Andrew A. ; Matson, G. B. ; Hugg, J. W. ; Weiner, M. W.</creator><creatorcontrib>Maudsley, Andrew A. ; Matson, G. B. ; Hugg, J. W. ; Weiner, M. W.</creatorcontrib><description>The effect of different spatial‐encoding (k‐space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k‐space functions, symmetrically distributed. These studies examine the conventional k‐space distribution with spherical distribution, and 1/2 k‐space acquisition, using computer simulation studies of the MRSI acquisition for three spatial dimensions and experimental results. Results compare the spatial response function, Gibbs ringing effects, and signal contamination for different spatial‐encoding distribution functions. Results indicate that spherical encoding, in comparison with cubic encoding, results in a modest improvement of the re sponse function with approximately equivalent spatial resolution for the same acquisition time. For spin‐echo acquired data, reduced acquisition times can readily be obtained using 1/2 k‐space methods, with a concomitant reduction in signal to noise ratio.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.1910310610</identifier><identifier>PMID: 8057817</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Baltimore: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Aspartic Acid - analogs & derivatives ; Aspartic Acid - metabolism ; Biological and medical sciences ; Brain - anatomy & histology ; Brain - metabolism ; Choline - metabolism ; Computer Simulation ; Creatine - metabolism ; Fourier Analysis ; Hydrogen ; Image Enhancement - methods ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; k-space ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Medical sciences ; Miscellaneous. Technology ; Models, Structural ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Phosphates - metabolism ; Phosphorus ; Rats ; spectroscopic imaging</subject><ispartof>Magnetic resonance in medicine, 1994-06, Vol.31 (6), p.645-651</ispartof><rights>Copyright © 1994 Wiley‐Liss, Inc., A Wiley Company</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4070-a78c5509cac5b32a7f75e64184c49e1871767377ba859d29e71f504b4441375b3</citedby><cites>FETCH-LOGICAL-c4070-a78c5509cac5b32a7f75e64184c49e1871767377ba859d29e71f504b4441375b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.1910310610$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.1910310610$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4091600$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8057817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maudsley, Andrew A.</creatorcontrib><creatorcontrib>Matson, G. B.</creatorcontrib><creatorcontrib>Hugg, J. W.</creatorcontrib><creatorcontrib>Weiner, M. W.</creatorcontrib><title>Reduced phase encoding in spectroscopic imaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>The effect of different spatial‐encoding (k‐space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k‐space functions, symmetrically distributed. These studies examine the conventional k‐space distribution with spherical distribution, and 1/2 k‐space acquisition, using computer simulation studies of the MRSI acquisition for three spatial dimensions and experimental results. Results compare the spatial response function, Gibbs ringing effects, and signal contamination for different spatial‐encoding distribution functions. Results indicate that spherical encoding, in comparison with cubic encoding, results in a modest improvement of the re sponse function with approximately equivalent spatial resolution for the same acquisition time. For spin‐echo acquired data, reduced acquisition times can readily be obtained using 1/2 k‐space methods, with a concomitant reduction in signal to noise ratio.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Aspartic Acid - analogs & derivatives</subject><subject>Aspartic Acid - metabolism</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy & histology</subject><subject>Brain - metabolism</subject><subject>Choline - metabolism</subject><subject>Computer Simulation</subject><subject>Creatine - metabolism</subject><subject>Fourier Analysis</subject><subject>Hydrogen</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>k-space</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Models, Structural</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Phosphates - metabolism</subject><subject>Phosphorus</subject><subject>Rats</subject><subject>spectroscopic imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1PwzAUxC0EKqWwsiFlQGxpnxM7jkdUQUFqQVRAR8txnGLIF3Ej6H-Pq0RFTExvuN_dOx1C5xjGGCCYFE0xxhxDiCHCcICGmAaBH1BODtEQGAE_xJwcoxNr3wGAc0YGaBADZTFmQzRZ6rRVOvXqN2m1p0tVpaZce6b0bK3VpqmsqmqjPFPItRNO0VEmc6vP-jtCL7c3z9M7f_44u59ez31FgIEvWawoBa6kokkYSJYxqiOCY6II1zhmmEUsZCyRMeVpwDXDGQWSEEJwyJxlhK663LqpPlttN6IwVuk8l6WuWitYFFGHEgeOO1C5qrbRmagb17XZCgxit5BwC4nfhZzhok9uk0Kne7yfxOmXvS6tknnWyFIZu8cIcBzBLoZ32JfJ9fafp2KxXPyp4HdeYzf6e--VzYfYrULF6mEmXp9WfEbjuaDhD3L8i3c</recordid><startdate>199406</startdate><enddate>199406</enddate><creator>Maudsley, Andrew A.</creator><creator>Matson, G. B.</creator><creator>Hugg, J. W.</creator><creator>Weiner, M. W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Williams & Wilkins</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199406</creationdate><title>Reduced phase encoding in spectroscopic imaging</title><author>Maudsley, Andrew A. ; Matson, G. B. ; Hugg, J. W. ; Weiner, M. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4070-a78c5509cac5b32a7f75e64184c49e1871767377ba859d29e71f504b4441375b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Aspartic Acid - analogs & derivatives</topic><topic>Aspartic Acid - metabolism</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy & histology</topic><topic>Brain - metabolism</topic><topic>Choline - metabolism</topic><topic>Computer Simulation</topic><topic>Creatine - metabolism</topic><topic>Fourier Analysis</topic><topic>Hydrogen</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>k-space</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Models, Structural</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Phosphates - metabolism</topic><topic>Phosphorus</topic><topic>Rats</topic><topic>spectroscopic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maudsley, Andrew A.</creatorcontrib><creatorcontrib>Matson, G. B.</creatorcontrib><creatorcontrib>Hugg, J. W.</creatorcontrib><creatorcontrib>Weiner, M. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maudsley, Andrew A.</au><au>Matson, G. B.</au><au>Hugg, J. W.</au><au>Weiner, M. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced phase encoding in spectroscopic imaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>1994-06</date><risdate>1994</risdate><volume>31</volume><issue>6</issue><spage>645</spage><epage>651</epage><pages>645-651</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>The effect of different spatial‐encoding (k‐space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k‐space functions, symmetrically distributed. These studies examine the conventional k‐space distribution with spherical distribution, and 1/2 k‐space acquisition, using computer simulation studies of the MRSI acquisition for three spatial dimensions and experimental results. Results compare the spatial response function, Gibbs ringing effects, and signal contamination for different spatial‐encoding distribution functions. Results indicate that spherical encoding, in comparison with cubic encoding, results in a modest improvement of the re sponse function with approximately equivalent spatial resolution for the same acquisition time. For spin‐echo acquired data, reduced acquisition times can readily be obtained using 1/2 k‐space methods, with a concomitant reduction in signal to noise ratio.</abstract><cop>Baltimore</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>8057817</pmid><doi>10.1002/mrm.1910310610</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 1994-06, Vol.31 (6), p.645-651 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_76654134 |
source | MEDLINE; Wiley Online Library |
subjects | Adenosine Triphosphate - metabolism Animals Aspartic Acid - analogs & derivatives Aspartic Acid - metabolism Biological and medical sciences Brain - anatomy & histology Brain - metabolism Choline - metabolism Computer Simulation Creatine - metabolism Fourier Analysis Hydrogen Image Enhancement - methods Image Processing, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) k-space Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy - methods Medical sciences Miscellaneous. Technology Models, Structural Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques Phosphates - metabolism Phosphorus Rats spectroscopic imaging |
title | Reduced phase encoding in spectroscopic imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20phase%20encoding%20in%20spectroscopic%20imaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Maudsley,%20Andrew%20A.&rft.date=1994-06&rft.volume=31&rft.issue=6&rft.spage=645&rft.epage=651&rft.pages=645-651&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.1910310610&rft_dat=%3Cproquest_cross%3E76654134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76654134&rft_id=info:pmid/8057817&rfr_iscdi=true |