Activation of Ca(2+)-dependent K+ and Cl- currents by UTP and ATP in CFPAC-1 cells
Activation of Cl- and K+ conductances by nucleotide receptor-operated mobilization of intracellular Ca2+ was investigated in CFPAC-1 cells with the perforated-patch technique. Adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) caused a dose-dependent fast and transient membr...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 1994-04, Vol.426 (6), p.534-541 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Activation of Cl- and K+ conductances by nucleotide receptor-operated mobilization of intracellular Ca2+ was investigated in CFPAC-1 cells with the perforated-patch technique. Adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) caused a dose-dependent fast and transient membrane hyperpolarization. UTP was more effective than ATP. In voltage-clamped cells, two currents with different ionic permeability and kinetics were activated by the nucleotides. The first one was carried by Cl- ions, peaked in the first few seconds after addition of nucleotides, and lasted for 1 +/- 0.3 min. Its amplitude was about 2.7 nA at -100 mV with 100 mumol/l of either ATP or UTP. The second current was carried by K+ ions and was blocked by Cs+. This current peaked more slowly and had a mean duration of 4.6 +/- 0.7 min. Its amplitude was 0.9 nA and 0.5 nA at -20 mV with 100 mumol/l UTP and ATP, respectively. Activation of the nucleotide receptor caused a transient increase in intracellular Ca2+ concentration ([Ca2+]i) that was similar in the presence or absence of extracellular Ca2+. The ED50 for UTP was 24 mumol/l and that for ATP was 94 mumol/l. Depletion of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store by thapsigargin prevented both the nucleotide-induced [Ca2+]i increase and the activation of membrane currents. Addition of 2 mmol/l Ca2+ to thapsigargin-treated cells produced a sustained increase of Cl- and K+ currents, which was reversed by Ca2+ removal. The present study demonstrates that CFPAC-1 cells respond to nucleotide receptor activation with a transient increase in [Ca2+]i that stimulates Ca(2+)-dependent Cl- and K+ currents. |
---|---|
ISSN: | 0031-6768 |
DOI: | 10.1007/bf00378531 |