EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures

Attempts to classify Alzheimer's disease (AD) subjects versus controls using spectral-band measures of electroencephalographic (EEG) data typically achieve around 80% success. This study assessed the ability of adding non-linear EEG measures and using a neural-net classification procedure to im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electroencephalography and clinical neurophysiology 1994-08, Vol.91 (2), p.118-130
Hauptverfasser: Pritchard, Walter S., Duke, Dennis W., Coburn, Kerry L., Moore, Norman C., Tucker, Karen A., Jann, Michael W., Hostetler, Russell M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 2
container_start_page 118
container_title Electroencephalography and clinical neurophysiology
container_volume 91
creator Pritchard, Walter S.
Duke, Dennis W.
Coburn, Kerry L.
Moore, Norman C.
Tucker, Karen A.
Jann, Michael W.
Hostetler, Russell M.
description Attempts to classify Alzheimer's disease (AD) subjects versus controls using spectral-band measures of electroencephalographic (EEG) data typically achieve around 80% success. This study assessed the ability of adding non-linear EEG measures and using a neural-net classification procedure to improve this performance level. The non-linear EEG measures were estimated correlation dimension (“dimensional complexity,” or DCx) and saturation (degree of leveling-off of DCx with increasing embedding dimension). In a sample of 39 subjects (14 ADs, 25 controls), it was found that (a) the addition of non-linear EEG measures improved the classification accuracy of the AD/control status of subjects, and (b) a back-percolation neural net predictively classified the subjects much better than the standard linear techniques of multivariate discriminant analysis or nearest-neighbor discriminant analysis.
doi_str_mv 10.1016/0013-4694(94)90033-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76631539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0013469494900337</els_id><sourcerecordid>76631539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ceb051ca0ea17778bfff80eafc147b5a395d5814d402a30c64906e5c29037ad33</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpSLdJ36AFndoGolSyZMu-FELYpIFAL-1ZyNK4VbClrcZeSB6gz12ZXXIsDAzD_P_8zEfIe8GvBBfNF86FZKrp1OdOXXScS8n0K7IRra5YI1v-mmxeJG_IW8RHznklKn1KTnUtOqHEhvzdbu9YbxH8JY2wZDuyCDPdZfDBzWEP1I0WMQzB2TmkSNNAr8fn3xAmyJ-Q-oBQ3HQPGRekLsU5p5Hi0j-Cm5EGpHb5NUGcwdP-icYU2Rgi2ExLMp2KecmA5-RksCPCu2M_Iz9vtz9uvrGH73f3N9cPzEnZzsxBz2vhLAcrtNZtPwxDW4bBCaX72squ9nUrlFe8spK7RnW8gdpVHZfaeinPyMfD3V1OfxbA2UwBHYyjjZAWNLpppKhlV4TqIHQ5IWYYzC6HyeYnI7hZ8ZuVrVnZmrVW_EYX24fj_aWfwL-YjrzL_uthD-XJfYBs0AWIrtDOhZfxKfw_4B-NI5Xu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76631539</pqid></control><display><type>article</type><title>EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Pritchard, Walter S. ; Duke, Dennis W. ; Coburn, Kerry L. ; Moore, Norman C. ; Tucker, Karen A. ; Jann, Michael W. ; Hostetler, Russell M.</creator><creatorcontrib>Pritchard, Walter S. ; Duke, Dennis W. ; Coburn, Kerry L. ; Moore, Norman C. ; Tucker, Karen A. ; Jann, Michael W. ; Hostetler, Russell M.</creatorcontrib><description>Attempts to classify Alzheimer's disease (AD) subjects versus controls using spectral-band measures of electroencephalographic (EEG) data typically achieve around 80% success. This study assessed the ability of adding non-linear EEG measures and using a neural-net classification procedure to improve this performance level. The non-linear EEG measures were estimated correlation dimension (“dimensional complexity,” or DCx) and saturation (degree of leveling-off of DCx with increasing embedding dimension). In a sample of 39 subjects (14 ADs, 25 controls), it was found that (a) the addition of non-linear EEG measures improved the classification accuracy of the AD/control status of subjects, and (b) a back-percolation neural net predictively classified the subjects much better than the standard linear techniques of multivariate discriminant analysis or nearest-neighbor discriminant analysis.</description><identifier>ISSN: 0013-4694</identifier><identifier>EISSN: 1872-6380</identifier><identifier>DOI: 10.1016/0013-4694(94)90033-7</identifier><identifier>PMID: 7519141</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Aged ; Aged, 80 and over ; Alzheimer disease ; Alzheimer Disease - physiopathology ; Analysis of Variance ; Brain - physiopathology ; Brain Mapping ; Classification of Alzheimer patients ; Computer Simulation ; Discriminant Analysis ; Electroencephalography ; Female ; Humans ; Male ; Middle Aged ; Neural Networks (Computer) ; Neural-net modeling ; Non-linear EEG measures ; Spectral-band EEG change</subject><ispartof>Electroencephalography and clinical neurophysiology, 1994-08, Vol.91 (2), p.118-130</ispartof><rights>1994</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ceb051ca0ea17778bfff80eafc147b5a395d5814d402a30c64906e5c29037ad33</citedby><cites>FETCH-LOGICAL-c338t-ceb051ca0ea17778bfff80eafc147b5a395d5814d402a30c64906e5c29037ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7519141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pritchard, Walter S.</creatorcontrib><creatorcontrib>Duke, Dennis W.</creatorcontrib><creatorcontrib>Coburn, Kerry L.</creatorcontrib><creatorcontrib>Moore, Norman C.</creatorcontrib><creatorcontrib>Tucker, Karen A.</creatorcontrib><creatorcontrib>Jann, Michael W.</creatorcontrib><creatorcontrib>Hostetler, Russell M.</creatorcontrib><title>EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures</title><title>Electroencephalography and clinical neurophysiology</title><addtitle>Electroencephalogr Clin Neurophysiol</addtitle><description>Attempts to classify Alzheimer's disease (AD) subjects versus controls using spectral-band measures of electroencephalographic (EEG) data typically achieve around 80% success. This study assessed the ability of adding non-linear EEG measures and using a neural-net classification procedure to improve this performance level. The non-linear EEG measures were estimated correlation dimension (“dimensional complexity,” or DCx) and saturation (degree of leveling-off of DCx with increasing embedding dimension). In a sample of 39 subjects (14 ADs, 25 controls), it was found that (a) the addition of non-linear EEG measures improved the classification accuracy of the AD/control status of subjects, and (b) a back-percolation neural net predictively classified the subjects much better than the standard linear techniques of multivariate discriminant analysis or nearest-neighbor discriminant analysis.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Alzheimer disease</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Analysis of Variance</subject><subject>Brain - physiopathology</subject><subject>Brain Mapping</subject><subject>Classification of Alzheimer patients</subject><subject>Computer Simulation</subject><subject>Discriminant Analysis</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks (Computer)</subject><subject>Neural-net modeling</subject><subject>Non-linear EEG measures</subject><subject>Spectral-band EEG change</subject><issn>0013-4694</issn><issn>1872-6380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFq3DAQhkVpSLdJ36AFndoGolSyZMu-FELYpIFAL-1ZyNK4VbClrcZeSB6gz12ZXXIsDAzD_P_8zEfIe8GvBBfNF86FZKrp1OdOXXScS8n0K7IRra5YI1v-mmxeJG_IW8RHznklKn1KTnUtOqHEhvzdbu9YbxH8JY2wZDuyCDPdZfDBzWEP1I0WMQzB2TmkSNNAr8fn3xAmyJ-Q-oBQ3HQPGRekLsU5p5Hi0j-Cm5EGpHb5NUGcwdP-icYU2Rgi2ExLMp2KecmA5-RksCPCu2M_Iz9vtz9uvrGH73f3N9cPzEnZzsxBz2vhLAcrtNZtPwxDW4bBCaX72squ9nUrlFe8spK7RnW8gdpVHZfaeinPyMfD3V1OfxbA2UwBHYyjjZAWNLpppKhlV4TqIHQ5IWYYzC6HyeYnI7hZ8ZuVrVnZmrVW_EYX24fj_aWfwL-YjrzL_uthD-XJfYBs0AWIrtDOhZfxKfw_4B-NI5Xu</recordid><startdate>199408</startdate><enddate>199408</enddate><creator>Pritchard, Walter S.</creator><creator>Duke, Dennis W.</creator><creator>Coburn, Kerry L.</creator><creator>Moore, Norman C.</creator><creator>Tucker, Karen A.</creator><creator>Jann, Michael W.</creator><creator>Hostetler, Russell M.</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199408</creationdate><title>EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures</title><author>Pritchard, Walter S. ; Duke, Dennis W. ; Coburn, Kerry L. ; Moore, Norman C. ; Tucker, Karen A. ; Jann, Michael W. ; Hostetler, Russell M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ceb051ca0ea17778bfff80eafc147b5a395d5814d402a30c64906e5c29037ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Alzheimer disease</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Analysis of Variance</topic><topic>Brain - physiopathology</topic><topic>Brain Mapping</topic><topic>Classification of Alzheimer patients</topic><topic>Computer Simulation</topic><topic>Discriminant Analysis</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks (Computer)</topic><topic>Neural-net modeling</topic><topic>Non-linear EEG measures</topic><topic>Spectral-band EEG change</topic><toplevel>online_resources</toplevel><creatorcontrib>Pritchard, Walter S.</creatorcontrib><creatorcontrib>Duke, Dennis W.</creatorcontrib><creatorcontrib>Coburn, Kerry L.</creatorcontrib><creatorcontrib>Moore, Norman C.</creatorcontrib><creatorcontrib>Tucker, Karen A.</creatorcontrib><creatorcontrib>Jann, Michael W.</creatorcontrib><creatorcontrib>Hostetler, Russell M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Electroencephalography and clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pritchard, Walter S.</au><au>Duke, Dennis W.</au><au>Coburn, Kerry L.</au><au>Moore, Norman C.</au><au>Tucker, Karen A.</au><au>Jann, Michael W.</au><au>Hostetler, Russell M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures</atitle><jtitle>Electroencephalography and clinical neurophysiology</jtitle><addtitle>Electroencephalogr Clin Neurophysiol</addtitle><date>1994-08</date><risdate>1994</risdate><volume>91</volume><issue>2</issue><spage>118</spage><epage>130</epage><pages>118-130</pages><issn>0013-4694</issn><eissn>1872-6380</eissn><abstract>Attempts to classify Alzheimer's disease (AD) subjects versus controls using spectral-band measures of electroencephalographic (EEG) data typically achieve around 80% success. This study assessed the ability of adding non-linear EEG measures and using a neural-net classification procedure to improve this performance level. The non-linear EEG measures were estimated correlation dimension (“dimensional complexity,” or DCx) and saturation (degree of leveling-off of DCx with increasing embedding dimension). In a sample of 39 subjects (14 ADs, 25 controls), it was found that (a) the addition of non-linear EEG measures improved the classification accuracy of the AD/control status of subjects, and (b) a back-percolation neural net predictively classified the subjects much better than the standard linear techniques of multivariate discriminant analysis or nearest-neighbor discriminant analysis.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>7519141</pmid><doi>10.1016/0013-4694(94)90033-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4694
ispartof Electroencephalography and clinical neurophysiology, 1994-08, Vol.91 (2), p.118-130
issn 0013-4694
1872-6380
language eng
recordid cdi_proquest_miscellaneous_76631539
source MEDLINE; Alma/SFX Local Collection
subjects Aged
Aged, 80 and over
Alzheimer disease
Alzheimer Disease - physiopathology
Analysis of Variance
Brain - physiopathology
Brain Mapping
Classification of Alzheimer patients
Computer Simulation
Discriminant Analysis
Electroencephalography
Female
Humans
Male
Middle Aged
Neural Networks (Computer)
Neural-net modeling
Non-linear EEG measures
Spectral-band EEG change
title EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG-based,%20neural-net%20predictive%20classification%20of%20Alzheimer's%20disease%20versus%20control%20subjects%20is%20augmented%20by%20non-linear%20EEG%20measures&rft.jtitle=Electroencephalography%20and%20clinical%20neurophysiology&rft.au=Pritchard,%20Walter%20S.&rft.date=1994-08&rft.volume=91&rft.issue=2&rft.spage=118&rft.epage=130&rft.pages=118-130&rft.issn=0013-4694&rft.eissn=1872-6380&rft_id=info:doi/10.1016/0013-4694(94)90033-7&rft_dat=%3Cproquest_cross%3E76631539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76631539&rft_id=info:pmid/7519141&rft_els_id=0013469494900337&rfr_iscdi=true