Harnessing the writhe: a role for DNA chaperones in nucleoprotein-complex formation

In both the eukaryotic nucleus and the prokaryotic nucleoid, much of the DNA is organized into complex nucleoprotein assemblies in which DNA is compacted by looping or by wrapping on a protein surface. Some assemblies are required for the processes of initiation of transcription, DNA replication and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biochemical sciences (Amsterdam. Regular ed.) 1994-05, Vol.19 (5), p.185-187
Hauptverfasser: Ner, S S, Travers, A A, Churchill, M E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue 5
container_start_page 185
container_title Trends in biochemical sciences (Amsterdam. Regular ed.)
container_volume 19
creator Ner, S S
Travers, A A
Churchill, M E
description In both the eukaryotic nucleus and the prokaryotic nucleoid, much of the DNA is organized into complex nucleoprotein assemblies in which DNA is compacted by looping or by wrapping on a protein surface. Some assemblies are required for the processes of initiation of transcription, DNA replication and site-specific recombination, while others, such as the nucleosome, package and organize DNA. The DNA in these assemblies is both highly ordered and deformed. For example, in the nucleosome core particle, 145 base pairs of DNA are wrapped in 1.8 left-handed superhelical turns, equivalent to a bend of 47 degree for each double-helical turn. Yet in solution, DNA molecules are too rigid to achieve this degree of folding in the absence of interacting proteins. This implies that the assembly of such structures must surmount a significant energetic barrier. One way to overcome this penalty would be to maintain the DNA in an appropriate configuration before complex formation.
doi_str_mv 10.1016/0968-0004(94)90017-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_76623127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16947432</sourcerecordid><originalsourceid>FETCH-LOGICAL-p169t-4742d8c2bf5e4721fab49f84d85e2f857998c51c55471fe5126cce889600bf3b3</originalsourceid><addsrcrecordid>eNqFkLFOwzAURT2ASin8AUieEAwB27Fjm61qgSJVMABz5LjPNCiJg50I-HuMqFiZ7tPV0dXRQ-iEkktKaHFFdKEyQgg_1_xCE0JlJvbQ9K8-QIcxvqVeSCkmaKIIV-meoqeVCR3EWHeveNgC_gh1imtscPANYOcDXj7Msd2aHoJPJK473I22Ad8HP0DdZda3fQOfP2xrhtp3R2jfmSbC8S5n6OX25nmxytaPd_eL-TrraaGHjEvONsqyygngklFnKq6d4hslgDklpNbKCmqF4JI6EJQV1oJSuiCkcnmVz9DZ724yeR8hDmVbRwtNYzrwYyxlUbCcMvkvmHSSTM4SeLoDx6qFTdmHujXhq9y9K_8GPU5q2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16947432</pqid></control><display><type>article</type><title>Harnessing the writhe: a role for DNA chaperones in nucleoprotein-complex formation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ner, S S ; Travers, A A ; Churchill, M E</creator><creatorcontrib>Ner, S S ; Travers, A A ; Churchill, M E</creatorcontrib><description>In both the eukaryotic nucleus and the prokaryotic nucleoid, much of the DNA is organized into complex nucleoprotein assemblies in which DNA is compacted by looping or by wrapping on a protein surface. Some assemblies are required for the processes of initiation of transcription, DNA replication and site-specific recombination, while others, such as the nucleosome, package and organize DNA. The DNA in these assemblies is both highly ordered and deformed. For example, in the nucleosome core particle, 145 base pairs of DNA are wrapped in 1.8 left-handed superhelical turns, equivalent to a bend of 47 degree for each double-helical turn. Yet in solution, DNA molecules are too rigid to achieve this degree of folding in the absence of interacting proteins. This implies that the assembly of such structures must surmount a significant energetic barrier. One way to overcome this penalty would be to maintain the DNA in an appropriate configuration before complex formation.</description><identifier>ISSN: 0968-0004</identifier><identifier>DOI: 10.1016/0968-0004(94)90017-5</identifier><identifier>PMID: 8048157</identifier><language>eng</language><publisher>England</publisher><subject>Bacterial Proteins - metabolism ; DNA - chemistry ; DNA - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; High Mobility Group Proteins - metabolism ; Nucleic Acid Conformation ; Nucleoproteins - metabolism</subject><ispartof>Trends in biochemical sciences (Amsterdam. Regular ed.), 1994-05, Vol.19 (5), p.185-187</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8048157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ner, S S</creatorcontrib><creatorcontrib>Travers, A A</creatorcontrib><creatorcontrib>Churchill, M E</creatorcontrib><title>Harnessing the writhe: a role for DNA chaperones in nucleoprotein-complex formation</title><title>Trends in biochemical sciences (Amsterdam. Regular ed.)</title><addtitle>Trends Biochem Sci</addtitle><description>In both the eukaryotic nucleus and the prokaryotic nucleoid, much of the DNA is organized into complex nucleoprotein assemblies in which DNA is compacted by looping or by wrapping on a protein surface. Some assemblies are required for the processes of initiation of transcription, DNA replication and site-specific recombination, while others, such as the nucleosome, package and organize DNA. The DNA in these assemblies is both highly ordered and deformed. For example, in the nucleosome core particle, 145 base pairs of DNA are wrapped in 1.8 left-handed superhelical turns, equivalent to a bend of 47 degree for each double-helical turn. Yet in solution, DNA molecules are too rigid to achieve this degree of folding in the absence of interacting proteins. This implies that the assembly of such structures must surmount a significant energetic barrier. One way to overcome this penalty would be to maintain the DNA in an appropriate configuration before complex formation.</description><subject>Bacterial Proteins - metabolism</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>High Mobility Group Proteins - metabolism</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleoproteins - metabolism</subject><issn>0968-0004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLFOwzAURT2ASin8AUieEAwB27Fjm61qgSJVMABz5LjPNCiJg50I-HuMqFiZ7tPV0dXRQ-iEkktKaHFFdKEyQgg_1_xCE0JlJvbQ9K8-QIcxvqVeSCkmaKIIV-meoqeVCR3EWHeveNgC_gh1imtscPANYOcDXj7Msd2aHoJPJK473I22Ad8HP0DdZda3fQOfP2xrhtp3R2jfmSbC8S5n6OX25nmxytaPd_eL-TrraaGHjEvONsqyygngklFnKq6d4hslgDklpNbKCmqF4JI6EJQV1oJSuiCkcnmVz9DZ724yeR8hDmVbRwtNYzrwYyxlUbCcMvkvmHSSTM4SeLoDx6qFTdmHujXhq9y9K_8GPU5q2g</recordid><startdate>19940501</startdate><enddate>19940501</enddate><creator>Ner, S S</creator><creator>Travers, A A</creator><creator>Churchill, M E</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>19940501</creationdate><title>Harnessing the writhe: a role for DNA chaperones in nucleoprotein-complex formation</title><author>Ner, S S ; Travers, A A ; Churchill, M E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p169t-4742d8c2bf5e4721fab49f84d85e2f857998c51c55471fe5126cce889600bf3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Bacterial Proteins - metabolism</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>High Mobility Group Proteins - metabolism</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleoproteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ner, S S</creatorcontrib><creatorcontrib>Travers, A A</creatorcontrib><creatorcontrib>Churchill, M E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biochemical sciences (Amsterdam. Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ner, S S</au><au>Travers, A A</au><au>Churchill, M E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing the writhe: a role for DNA chaperones in nucleoprotein-complex formation</atitle><jtitle>Trends in biochemical sciences (Amsterdam. Regular ed.)</jtitle><addtitle>Trends Biochem Sci</addtitle><date>1994-05-01</date><risdate>1994</risdate><volume>19</volume><issue>5</issue><spage>185</spage><epage>187</epage><pages>185-187</pages><issn>0968-0004</issn><abstract>In both the eukaryotic nucleus and the prokaryotic nucleoid, much of the DNA is organized into complex nucleoprotein assemblies in which DNA is compacted by looping or by wrapping on a protein surface. Some assemblies are required for the processes of initiation of transcription, DNA replication and site-specific recombination, while others, such as the nucleosome, package and organize DNA. The DNA in these assemblies is both highly ordered and deformed. For example, in the nucleosome core particle, 145 base pairs of DNA are wrapped in 1.8 left-handed superhelical turns, equivalent to a bend of 47 degree for each double-helical turn. Yet in solution, DNA molecules are too rigid to achieve this degree of folding in the absence of interacting proteins. This implies that the assembly of such structures must surmount a significant energetic barrier. One way to overcome this penalty would be to maintain the DNA in an appropriate configuration before complex formation.</abstract><cop>England</cop><pmid>8048157</pmid><doi>10.1016/0968-0004(94)90017-5</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0968-0004
ispartof Trends in biochemical sciences (Amsterdam. Regular ed.), 1994-05, Vol.19 (5), p.185-187
issn 0968-0004
language eng
recordid cdi_proquest_miscellaneous_76623127
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bacterial Proteins - metabolism
DNA - chemistry
DNA - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
High Mobility Group Proteins - metabolism
Nucleic Acid Conformation
Nucleoproteins - metabolism
title Harnessing the writhe: a role for DNA chaperones in nucleoprotein-complex formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20the%20writhe:%20a%20role%20for%20DNA%20chaperones%20in%20nucleoprotein-complex%20formation&rft.jtitle=Trends%20in%20biochemical%20sciences%20(Amsterdam.%20Regular%20ed.)&rft.au=Ner,%20S%20S&rft.date=1994-05-01&rft.volume=19&rft.issue=5&rft.spage=185&rft.epage=187&rft.pages=185-187&rft.issn=0968-0004&rft_id=info:doi/10.1016/0968-0004(94)90017-5&rft_dat=%3Cproquest_pubme%3E16947432%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16947432&rft_id=info:pmid/8048157&rfr_iscdi=true