Na(+)-ATPase activity of Na(+),K(+)-ATPase. Reactivity of the E2 form during Na(+)-ATPase turnover

Based on work of Post et al. (Post, R. L. Toda, G., and Rogers, F.N. (1975) J. Biol, Chem. 250, 691-701), we studied the E2 form reactivity of Na(+),K(+)-ATPase (EC 3.6.1.37) during Na(+)-ATPase turnover by following ATP hydrolysis with and without P(i) and enzyme phosphorylation from P(i) at 20 deg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1994-07, Vol.269 (27), p.18028-18036
Hauptverfasser: CAMPOS, M, BEAUGE, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18036
container_issue 27
container_start_page 18028
container_title The Journal of biological chemistry
container_volume 269
creator CAMPOS, M
BEAUGE, L
description Based on work of Post et al. (Post, R. L. Toda, G., and Rogers, F.N. (1975) J. Biol, Chem. 250, 691-701), we studied the E2 form reactivity of Na(+),K(+)-ATPase (EC 3.6.1.37) during Na(+)-ATPase turnover by following ATP hydrolysis with and without P(i) and enzyme phosphorylation from P(i) at 20 degrees C. For theoretical calculations we employed the Albers-Post scheme assuming that, even with no K+, E2 exhibits the ATP regulatory site. Using available rate constants the model predicts: (i) without P(i), Na(+)-ATPase displays a single high affinity ATP site but becomes double Michaelian (with high and low ATP affinity) when P(i) is present. (ii) Phosphorylation from P(i) can be detected during Na(+)-ATPase (t 1/2 about 400 ms); the KmP(i) is substantially higher that the KdP(i). (iii) P(i) incorporation is reduced by ATP acting with low affinity; this does not require an increase in the E2-E1 transition rate. (iv) The KmATP of the regulatory site is augmented when [P(i)] increases. The experimental observations, using partially purified pig kidney enzyme, agreed with the predictions. In addition they showed that: (i) extracellular Na+ can prevent P(i) incorporation; this effect is additive with that of ATP but with independent Ki values. (ii) Mg2+ stimulates P(i) incorporation with low affinity (Km of 1.5 mM). (iii) beta, gamma-Methyleneadenosine 5'-triphosphate and palmitoyl-CoA antagonize P(i) inhibition of Na(+)-ATPase. These results agree with a model where the Na(+),K(+)-ATPase and Na(+)-ATPase cycles share most of their intermediate steps and enzyme conformations.
doi_str_mv 10.1016/S0021-9258(17)32413-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76590761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76590761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3244-633acfef65b2ab102cbce1aa6e6919a38ac629c456074cba2c1dacc16958cc8a3</originalsourceid><addsrcrecordid>eNpVkNtKxDAQhoMouh4eQeiFiKLVTJKmzaWIJxQVD-BdmM6mbmS71aRVfHvruqw6N7n4v_knfIxtAj8ADvrwnnMBqRFZsQP5rhQKZKoW2AB4IVOZwdMiG8yRFbYa4wvvRxlYZssFFznXYsDKa9zZ202PHm4xugSp9e--_UyaKpkG-5e_6UFy5_4C7cglJyKpmlAnwy74yXPyr6ztwqR5d2GdLVU4jm5j9q6xx9OTh-Pz9Orm7OL46Cql_vMq1VIiVa7SWSmwBC6oJAeI2mkDBmWBpIUhlWmeKypREAyRCLTJCqIC5Rrb_ul9Dc1b52Jrax_Jjcc4cU0Xba4zw3MNPZj9gBSaGIOr7GvwNYZPC9x-u7VTt_ZbnIXcTt1a1e9tzg50Ze2G862ZzD7fmuUYCcdVwAn5OMeUkKowf7CRfx59-OBs6RsaudoKbazILfSFhfwC5BWJkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76590761</pqid></control><display><type>article</type><title>Na(+)-ATPase activity of Na(+),K(+)-ATPase. Reactivity of the E2 form during Na(+)-ATPase turnover</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>CAMPOS, M ; BEAUGE, L</creator><creatorcontrib>CAMPOS, M ; BEAUGE, L</creatorcontrib><description>Based on work of Post et al. (Post, R. L. Toda, G., and Rogers, F.N. (1975) J. Biol, Chem. 250, 691-701), we studied the E2 form reactivity of Na(+),K(+)-ATPase (EC 3.6.1.37) during Na(+)-ATPase turnover by following ATP hydrolysis with and without P(i) and enzyme phosphorylation from P(i) at 20 degrees C. For theoretical calculations we employed the Albers-Post scheme assuming that, even with no K+, E2 exhibits the ATP regulatory site. Using available rate constants the model predicts: (i) without P(i), Na(+)-ATPase displays a single high affinity ATP site but becomes double Michaelian (with high and low ATP affinity) when P(i) is present. (ii) Phosphorylation from P(i) can be detected during Na(+)-ATPase (t 1/2 about 400 ms); the KmP(i) is substantially higher that the KdP(i). (iii) P(i) incorporation is reduced by ATP acting with low affinity; this does not require an increase in the E2-E1 transition rate. (iv) The KmATP of the regulatory site is augmented when [P(i)] increases. The experimental observations, using partially purified pig kidney enzyme, agreed with the predictions. In addition they showed that: (i) extracellular Na+ can prevent P(i) incorporation; this effect is additive with that of ATP but with independent Ki values. (ii) Mg2+ stimulates P(i) incorporation with low affinity (Km of 1.5 mM). (iii) beta, gamma-Methyleneadenosine 5'-triphosphate and palmitoyl-CoA antagonize P(i) inhibition of Na(+)-ATPase. These results agree with a model where the Na(+),K(+)-ATPase and Na(+)-ATPase cycles share most of their intermediate steps and enzyme conformations.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(17)32413-4</identifier><identifier>PMID: 8027062</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: American Society for Biochemistry and Molecular Biology</publisher><subject>Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; Analytical, structural and metabolic biochemistry ; Animals ; Biological and medical sciences ; Cation Transport Proteins ; Enzyme Activation ; Enzymes and enzyme inhibitors ; Fundamental and applied biological sciences. Psychology ; Hydrolases ; Kinetics ; Models, Biological ; Phosphates - metabolism ; Phosphorylation ; Protein Conformation ; Sodium-Potassium-Exchanging ATPase - metabolism ; Swine</subject><ispartof>The Journal of biological chemistry, 1994-07, Vol.269 (27), p.18028-18036</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3244-633acfef65b2ab102cbce1aa6e6919a38ac629c456074cba2c1dacc16958cc8a3</citedby><cites>FETCH-LOGICAL-c3244-633acfef65b2ab102cbce1aa6e6919a38ac629c456074cba2c1dacc16958cc8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4234892$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8027062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CAMPOS, M</creatorcontrib><creatorcontrib>BEAUGE, L</creatorcontrib><title>Na(+)-ATPase activity of Na(+),K(+)-ATPase. Reactivity of the E2 form during Na(+)-ATPase turnover</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Based on work of Post et al. (Post, R. L. Toda, G., and Rogers, F.N. (1975) J. Biol, Chem. 250, 691-701), we studied the E2 form reactivity of Na(+),K(+)-ATPase (EC 3.6.1.37) during Na(+)-ATPase turnover by following ATP hydrolysis with and without P(i) and enzyme phosphorylation from P(i) at 20 degrees C. For theoretical calculations we employed the Albers-Post scheme assuming that, even with no K+, E2 exhibits the ATP regulatory site. Using available rate constants the model predicts: (i) without P(i), Na(+)-ATPase displays a single high affinity ATP site but becomes double Michaelian (with high and low ATP affinity) when P(i) is present. (ii) Phosphorylation from P(i) can be detected during Na(+)-ATPase (t 1/2 about 400 ms); the KmP(i) is substantially higher that the KdP(i). (iii) P(i) incorporation is reduced by ATP acting with low affinity; this does not require an increase in the E2-E1 transition rate. (iv) The KmATP of the regulatory site is augmented when [P(i)] increases. The experimental observations, using partially purified pig kidney enzyme, agreed with the predictions. In addition they showed that: (i) extracellular Na+ can prevent P(i) incorporation; this effect is additive with that of ATP but with independent Ki values. (ii) Mg2+ stimulates P(i) incorporation with low affinity (Km of 1.5 mM). (iii) beta, gamma-Methyleneadenosine 5'-triphosphate and palmitoyl-CoA antagonize P(i) inhibition of Na(+)-ATPase. These results agree with a model where the Na(+),K(+)-ATPase and Na(+)-ATPase cycles share most of their intermediate steps and enzyme conformations.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cation Transport Proteins</subject><subject>Enzyme Activation</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrolases</subject><subject>Kinetics</subject><subject>Models, Biological</subject><subject>Phosphates - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Conformation</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Swine</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkNtKxDAQhoMouh4eQeiFiKLVTJKmzaWIJxQVD-BdmM6mbmS71aRVfHvruqw6N7n4v_knfIxtAj8ADvrwnnMBqRFZsQP5rhQKZKoW2AB4IVOZwdMiG8yRFbYa4wvvRxlYZssFFznXYsDKa9zZ202PHm4xugSp9e--_UyaKpkG-5e_6UFy5_4C7cglJyKpmlAnwy74yXPyr6ztwqR5d2GdLVU4jm5j9q6xx9OTh-Pz9Orm7OL46Cql_vMq1VIiVa7SWSmwBC6oJAeI2mkDBmWBpIUhlWmeKypREAyRCLTJCqIC5Rrb_ul9Dc1b52Jrax_Jjcc4cU0Xba4zw3MNPZj9gBSaGIOr7GvwNYZPC9x-u7VTt_ZbnIXcTt1a1e9tzg50Ze2G862ZzD7fmuUYCcdVwAn5OMeUkKowf7CRfx59-OBs6RsaudoKbazILfSFhfwC5BWJkg</recordid><startdate>19940708</startdate><enddate>19940708</enddate><creator>CAMPOS, M</creator><creator>BEAUGE, L</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19940708</creationdate><title>Na(+)-ATPase activity of Na(+),K(+)-ATPase. Reactivity of the E2 form during Na(+)-ATPase turnover</title><author>CAMPOS, M ; BEAUGE, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3244-633acfef65b2ab102cbce1aa6e6919a38ac629c456074cba2c1dacc16958cc8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cation Transport Proteins</topic><topic>Enzyme Activation</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrolases</topic><topic>Kinetics</topic><topic>Models, Biological</topic><topic>Phosphates - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Conformation</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CAMPOS, M</creatorcontrib><creatorcontrib>BEAUGE, L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CAMPOS, M</au><au>BEAUGE, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na(+)-ATPase activity of Na(+),K(+)-ATPase. Reactivity of the E2 form during Na(+)-ATPase turnover</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1994-07-08</date><risdate>1994</risdate><volume>269</volume><issue>27</issue><spage>18028</spage><epage>18036</epage><pages>18028-18036</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>Based on work of Post et al. (Post, R. L. Toda, G., and Rogers, F.N. (1975) J. Biol, Chem. 250, 691-701), we studied the E2 form reactivity of Na(+),K(+)-ATPase (EC 3.6.1.37) during Na(+)-ATPase turnover by following ATP hydrolysis with and without P(i) and enzyme phosphorylation from P(i) at 20 degrees C. For theoretical calculations we employed the Albers-Post scheme assuming that, even with no K+, E2 exhibits the ATP regulatory site. Using available rate constants the model predicts: (i) without P(i), Na(+)-ATPase displays a single high affinity ATP site but becomes double Michaelian (with high and low ATP affinity) when P(i) is present. (ii) Phosphorylation from P(i) can be detected during Na(+)-ATPase (t 1/2 about 400 ms); the KmP(i) is substantially higher that the KdP(i). (iii) P(i) incorporation is reduced by ATP acting with low affinity; this does not require an increase in the E2-E1 transition rate. (iv) The KmATP of the regulatory site is augmented when [P(i)] increases. The experimental observations, using partially purified pig kidney enzyme, agreed with the predictions. In addition they showed that: (i) extracellular Na+ can prevent P(i) incorporation; this effect is additive with that of ATP but with independent Ki values. (ii) Mg2+ stimulates P(i) incorporation with low affinity (Km of 1.5 mM). (iii) beta, gamma-Methyleneadenosine 5'-triphosphate and palmitoyl-CoA antagonize P(i) inhibition of Na(+)-ATPase. These results agree with a model where the Na(+),K(+)-ATPase and Na(+)-ATPase cycles share most of their intermediate steps and enzyme conformations.</abstract><cop>Bethesda, MD</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>8027062</pmid><doi>10.1016/S0021-9258(17)32413-4</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1994-07, Vol.269 (27), p.18028-18036
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_76590761
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - metabolism
Analytical, structural and metabolic biochemistry
Animals
Biological and medical sciences
Cation Transport Proteins
Enzyme Activation
Enzymes and enzyme inhibitors
Fundamental and applied biological sciences. Psychology
Hydrolases
Kinetics
Models, Biological
Phosphates - metabolism
Phosphorylation
Protein Conformation
Sodium-Potassium-Exchanging ATPase - metabolism
Swine
title Na(+)-ATPase activity of Na(+),K(+)-ATPase. Reactivity of the E2 form during Na(+)-ATPase turnover
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na(+)-ATPase%20activity%20of%20Na(+),K(+)-ATPase.%20Reactivity%20of%20the%20E2%20form%20during%20Na(+)-ATPase%20turnover&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=CAMPOS,%20M&rft.date=1994-07-08&rft.volume=269&rft.issue=27&rft.spage=18028&rft.epage=18036&rft.pages=18028-18036&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(17)32413-4&rft_dat=%3Cproquest_cross%3E76590761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76590761&rft_id=info:pmid/8027062&rfr_iscdi=true