Selenite induction of DNA strand breaks and apoptosis in mouse leukemic L1210 cells

The effects of selenite on DNA integrity, cell viability, and long-term proliferative potential of mouse leukemic L1210 cells were examined in this study. Selenite treatment resulted in concentration-dependent increases in DNA single-strand breaks and double-strand breaks, as detected by a modified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 1994-04, Vol.47 (9), p.1531-1535
Hauptverfasser: Lu, Junxuan, Kaeck, Mark, Jiang, Cheng, Wilson, Adrian C., Thompson, Henry J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of selenite on DNA integrity, cell viability, and long-term proliferative potential of mouse leukemic L1210 cells were examined in this study. Selenite treatment resulted in concentration-dependent increases in DNA single-strand breaks and double-strand breaks, as detected by a modified filter elution assay. A time-course experiment showed that DNA single-strand breaks preceded DNA double-strand breaks. Agarose gel electrophoresis of DNA extracted from selenite-treated cells displayed a nucleosomal fragmentation pattern that is characteristics of apoptotic cell death. The involvement of a Ca 2+, Mg 2+-dependent endonuclease responsible for DNA double-strand fragmentation was implied by the observation that two inhibitors of endonuclease activity, i.e. aurintricarboxylic acid and zinc, blocked selenite-induced DNA double-strand breaks. These inhibitors also prevented selenite-induced cell death as defined by loss of ability to exclude trypan blue dye. Selenite treatment severely impaired the colony-forming ability of cell capable of trypan blue exclusion. The induction of DNA strand breaks and commitment to apoptosis may explain the selenite-mediated growth inhibition and loss of long-term proliferative potential.
ISSN:0006-2952
1873-2968
DOI:10.1016/0006-2952(94)90528-2