Projective Imaging of Pulsatile Flow with Magnetic Resonance

Noninvasive angiography with magnetic resonance is demonstrated. Signal arising in all structures except vessels that carry pulsatile flow is eliminated by means of velocity-dependent phase contrast, electrocardiographic gating, and image subtraction. Background structures become in effect transpare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1985-11, Vol.230 (4728), p.946-948
Hauptverfasser: Wedeen, Van J., Meuli, Reto A., Edelman, Robert R., Geller, Stuart C., Frank, Lawrence R., Brady, Thomas J., Rosen, Bruce R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 948
container_issue 4728
container_start_page 946
container_title Science (American Association for the Advancement of Science)
container_volume 230
creator Wedeen, Van J.
Meuli, Reto A.
Edelman, Robert R.
Geller, Stuart C.
Frank, Lawrence R.
Brady, Thomas J.
Rosen, Bruce R.
description Noninvasive angiography with magnetic resonance is demonstrated. Signal arising in all structures except vessels that carry pulsatile flow is eliminated by means of velocity-dependent phase contrast, electrocardiographic gating, and image subtraction. Background structures become in effect transparent, enabling the three-dimensional vascular tree to be imaged by projection to a two-dimensional image plane. Image acquisition and processing are accomplished with entirely conventional two-dimensional Fourier transform magnetic resonance imaging techniques. When imaged at 0.6 tesla, vessels 1 to 2 millimeters in diameter are routinely detected in a 50-centimeter field of view with data acquisition times less than 15 minutes. Studies of normal and pathologic anatomy are illustrated in human subjects.
doi_str_mv 10.1126/science.4059917
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_76450256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A4030012</galeid><jstor_id>1696008</jstor_id><sourcerecordid>A4030012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-43a8b88f9822ac6004856b7b837e957185b90dceca1eb9aac1ac9c056241381b3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMoun6cvSj0IF6kOmmaNgEvy-IXKIroOaRxWrNkG22yfvx7I1v0NIf3mXmHh5B9CqeUFtVZMBZ7g6clcClpvUYmFCTPZQFsnUwAWJULqPkW2Q5hDpAyyTbJ5ohPyPnD4Odoov3A7GahO9t3mW-zh6ULOlqH2aXzn9mnja_Zne56jNZkjxh8r1PrLtlotQu4N84d8nx58TS7zm_vr25m09vclCBiXjItGiFaKYpCmwqgFLxq6kawGiWvqeCNhBeDRlNspNaGaiMN8KooKRO0YTvkeHX3bfDvSwxRLWww6Jzu0S-DqquSQ8GrBJ6swE47VLY3vo_4FY13DjtU6anZvZqWwABokeizFW0GH8KArXob7EIP34qC-rWrRrtq1JU2DsdHls0CX_74__xozHUw2rVDsmTDHyZ4wUvJEnawwuYh-uG_tZJJjmA_IMuLNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76450256</pqid></control><display><type>article</type><title>Projective Imaging of Pulsatile Flow with Magnetic Resonance</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Wedeen, Van J. ; Meuli, Reto A. ; Edelman, Robert R. ; Geller, Stuart C. ; Frank, Lawrence R. ; Brady, Thomas J. ; Rosen, Bruce R.</creator><creatorcontrib>Wedeen, Van J. ; Meuli, Reto A. ; Edelman, Robert R. ; Geller, Stuart C. ; Frank, Lawrence R. ; Brady, Thomas J. ; Rosen, Bruce R.</creatorcontrib><description>Noninvasive angiography with magnetic resonance is demonstrated. Signal arising in all structures except vessels that carry pulsatile flow is eliminated by means of velocity-dependent phase contrast, electrocardiographic gating, and image subtraction. Background structures become in effect transparent, enabling the three-dimensional vascular tree to be imaged by projection to a two-dimensional image plane. Image acquisition and processing are accomplished with entirely conventional two-dimensional Fourier transform magnetic resonance imaging techniques. When imaged at 0.6 tesla, vessels 1 to 2 millimeters in diameter are routinely detected in a 50-centimeter field of view with data acquisition times less than 15 minutes. Studies of normal and pathologic anatomy are illustrated in human subjects.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.4059917</identifier><identifier>PMID: 4059917</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>Angiography ; Angiography - instrumentation ; Arteriosclerosis - diagnosis ; Biological and medical sciences ; Blood ; Diastole ; Flow velocity ; Humans ; Image contrast ; Imaging ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Spectroscopy ; Medical imaging equipment ; Medical sciences ; Miscellaneous. Technology ; Phase contrast imaging ; Phase shift ; Protons ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Radiology ; Systole</subject><ispartof>Science (American Association for the Advancement of Science), 1985-11, Vol.230 (4728), p.946-948</ispartof><rights>Copyright 1985 The American Association for the Advancement of Science</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-43a8b88f9822ac6004856b7b837e957185b90dceca1eb9aac1ac9c056241381b3</citedby><cites>FETCH-LOGICAL-c408t-43a8b88f9822ac6004856b7b837e957185b90dceca1eb9aac1ac9c056241381b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1696008$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1696008$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8525493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/4059917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wedeen, Van J.</creatorcontrib><creatorcontrib>Meuli, Reto A.</creatorcontrib><creatorcontrib>Edelman, Robert R.</creatorcontrib><creatorcontrib>Geller, Stuart C.</creatorcontrib><creatorcontrib>Frank, Lawrence R.</creatorcontrib><creatorcontrib>Brady, Thomas J.</creatorcontrib><creatorcontrib>Rosen, Bruce R.</creatorcontrib><title>Projective Imaging of Pulsatile Flow with Magnetic Resonance</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Noninvasive angiography with magnetic resonance is demonstrated. Signal arising in all structures except vessels that carry pulsatile flow is eliminated by means of velocity-dependent phase contrast, electrocardiographic gating, and image subtraction. Background structures become in effect transparent, enabling the three-dimensional vascular tree to be imaged by projection to a two-dimensional image plane. Image acquisition and processing are accomplished with entirely conventional two-dimensional Fourier transform magnetic resonance imaging techniques. When imaged at 0.6 tesla, vessels 1 to 2 millimeters in diameter are routinely detected in a 50-centimeter field of view with data acquisition times less than 15 minutes. Studies of normal and pathologic anatomy are illustrated in human subjects.</description><subject>Angiography</subject><subject>Angiography - instrumentation</subject><subject>Arteriosclerosis - diagnosis</subject><subject>Biological and medical sciences</subject><subject>Blood</subject><subject>Diastole</subject><subject>Flow velocity</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Imaging</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical imaging equipment</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Phase contrast imaging</subject><subject>Phase shift</subject><subject>Protons</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Radiology</subject><subject>Systole</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAQhoMoun6cvSj0IF6kOmmaNgEvy-IXKIroOaRxWrNkG22yfvx7I1v0NIf3mXmHh5B9CqeUFtVZMBZ7g6clcClpvUYmFCTPZQFsnUwAWJULqPkW2Q5hDpAyyTbJ5ohPyPnD4Odoov3A7GahO9t3mW-zh6ULOlqH2aXzn9mnja_Zne56jNZkjxh8r1PrLtlotQu4N84d8nx58TS7zm_vr25m09vclCBiXjItGiFaKYpCmwqgFLxq6kawGiWvqeCNhBeDRlNspNaGaiMN8KooKRO0YTvkeHX3bfDvSwxRLWww6Jzu0S-DqquSQ8GrBJ6swE47VLY3vo_4FY13DjtU6anZvZqWwABokeizFW0GH8KArXob7EIP34qC-rWrRrtq1JU2DsdHls0CX_74__xozHUw2rVDsmTDHyZ4wUvJEnawwuYh-uG_tZJJjmA_IMuLNA</recordid><startdate>19851122</startdate><enddate>19851122</enddate><creator>Wedeen, Van J.</creator><creator>Meuli, Reto A.</creator><creator>Edelman, Robert R.</creator><creator>Geller, Stuart C.</creator><creator>Frank, Lawrence R.</creator><creator>Brady, Thomas J.</creator><creator>Rosen, Bruce R.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19851122</creationdate><title>Projective Imaging of Pulsatile Flow with Magnetic Resonance</title><author>Wedeen, Van J. ; Meuli, Reto A. ; Edelman, Robert R. ; Geller, Stuart C. ; Frank, Lawrence R. ; Brady, Thomas J. ; Rosen, Bruce R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-43a8b88f9822ac6004856b7b837e957185b90dceca1eb9aac1ac9c056241381b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Angiography</topic><topic>Angiography - instrumentation</topic><topic>Arteriosclerosis - diagnosis</topic><topic>Biological and medical sciences</topic><topic>Blood</topic><topic>Diastole</topic><topic>Flow velocity</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Imaging</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical imaging equipment</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Phase contrast imaging</topic><topic>Phase shift</topic><topic>Protons</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Radiology</topic><topic>Systole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wedeen, Van J.</creatorcontrib><creatorcontrib>Meuli, Reto A.</creatorcontrib><creatorcontrib>Edelman, Robert R.</creatorcontrib><creatorcontrib>Geller, Stuart C.</creatorcontrib><creatorcontrib>Frank, Lawrence R.</creatorcontrib><creatorcontrib>Brady, Thomas J.</creatorcontrib><creatorcontrib>Rosen, Bruce R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wedeen, Van J.</au><au>Meuli, Reto A.</au><au>Edelman, Robert R.</au><au>Geller, Stuart C.</au><au>Frank, Lawrence R.</au><au>Brady, Thomas J.</au><au>Rosen, Bruce R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective Imaging of Pulsatile Flow with Magnetic Resonance</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1985-11-22</date><risdate>1985</risdate><volume>230</volume><issue>4728</issue><spage>946</spage><epage>948</epage><pages>946-948</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Noninvasive angiography with magnetic resonance is demonstrated. Signal arising in all structures except vessels that carry pulsatile flow is eliminated by means of velocity-dependent phase contrast, electrocardiographic gating, and image subtraction. Background structures become in effect transparent, enabling the three-dimensional vascular tree to be imaged by projection to a two-dimensional image plane. Image acquisition and processing are accomplished with entirely conventional two-dimensional Fourier transform magnetic resonance imaging techniques. When imaged at 0.6 tesla, vessels 1 to 2 millimeters in diameter are routinely detected in a 50-centimeter field of view with data acquisition times less than 15 minutes. Studies of normal and pathologic anatomy are illustrated in human subjects.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>4059917</pmid><doi>10.1126/science.4059917</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1985-11, Vol.230 (4728), p.946-948
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_76450256
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Angiography
Angiography - instrumentation
Arteriosclerosis - diagnosis
Biological and medical sciences
Blood
Diastole
Flow velocity
Humans
Image contrast
Imaging
Investigative techniques, diagnostic techniques (general aspects)
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Spectroscopy
Medical imaging equipment
Medical sciences
Miscellaneous. Technology
Phase contrast imaging
Phase shift
Protons
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Radiology
Systole
title Projective Imaging of Pulsatile Flow with Magnetic Resonance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20Imaging%20of%20Pulsatile%20Flow%20with%20Magnetic%20Resonance&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wedeen,%20Van%20J.&rft.date=1985-11-22&rft.volume=230&rft.issue=4728&rft.spage=946&rft.epage=948&rft.pages=946-948&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.4059917&rft_dat=%3Cgale_proqu%3EA4030012%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76450256&rft_id=info:pmid/4059917&rft_galeid=A4030012&rft_jstor_id=1696008&rfr_iscdi=true