Projective Imaging of Pulsatile Flow with Magnetic Resonance
Noninvasive angiography with magnetic resonance is demonstrated. Signal arising in all structures except vessels that carry pulsatile flow is eliminated by means of velocity-dependent phase contrast, electrocardiographic gating, and image subtraction. Background structures become in effect transpare...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1985-11, Vol.230 (4728), p.946-948 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 948 |
---|---|
container_issue | 4728 |
container_start_page | 946 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 230 |
creator | Wedeen, Van J. Meuli, Reto A. Edelman, Robert R. Geller, Stuart C. Frank, Lawrence R. Brady, Thomas J. Rosen, Bruce R. |
description | Noninvasive angiography with magnetic resonance is demonstrated. Signal arising in all structures except vessels that carry pulsatile flow is eliminated by means of velocity-dependent phase contrast, electrocardiographic gating, and image subtraction. Background structures become in effect transparent, enabling the three-dimensional vascular tree to be imaged by projection to a two-dimensional image plane. Image acquisition and processing are accomplished with entirely conventional two-dimensional Fourier transform magnetic resonance imaging techniques. When imaged at 0.6 tesla, vessels 1 to 2 millimeters in diameter are routinely detected in a 50-centimeter field of view with data acquisition times less than 15 minutes. Studies of normal and pathologic anatomy are illustrated in human subjects. |
doi_str_mv | 10.1126/science.4059917 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_76450256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A4030012</galeid><jstor_id>1696008</jstor_id><sourcerecordid>A4030012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-43a8b88f9822ac6004856b7b837e957185b90dceca1eb9aac1ac9c056241381b3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMoun6cvSj0IF6kOmmaNgEvy-IXKIroOaRxWrNkG22yfvx7I1v0NIf3mXmHh5B9CqeUFtVZMBZ7g6clcClpvUYmFCTPZQFsnUwAWJULqPkW2Q5hDpAyyTbJ5ohPyPnD4Odoov3A7GahO9t3mW-zh6ULOlqH2aXzn9mnja_Zne56jNZkjxh8r1PrLtlotQu4N84d8nx58TS7zm_vr25m09vclCBiXjItGiFaKYpCmwqgFLxq6kawGiWvqeCNhBeDRlNspNaGaiMN8KooKRO0YTvkeHX3bfDvSwxRLWww6Jzu0S-DqquSQ8GrBJ6swE47VLY3vo_4FY13DjtU6anZvZqWwABokeizFW0GH8KArXob7EIP34qC-rWrRrtq1JU2DsdHls0CX_74__xozHUw2rVDsmTDHyZ4wUvJEnawwuYh-uG_tZJJjmA_IMuLNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76450256</pqid></control><display><type>article</type><title>Projective Imaging of Pulsatile Flow with Magnetic Resonance</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Wedeen, Van J. ; Meuli, Reto A. ; Edelman, Robert R. ; Geller, Stuart C. ; Frank, Lawrence R. ; Brady, Thomas J. ; Rosen, Bruce R.</creator><creatorcontrib>Wedeen, Van J. ; Meuli, Reto A. ; Edelman, Robert R. ; Geller, Stuart C. ; Frank, Lawrence R. ; Brady, Thomas J. ; Rosen, Bruce R.</creatorcontrib><description>Noninvasive angiography with magnetic resonance is demonstrated. Signal arising in all structures except vessels that carry pulsatile flow is eliminated by means of velocity-dependent phase contrast, electrocardiographic gating, and image subtraction. Background structures become in effect transparent, enabling the three-dimensional vascular tree to be imaged by projection to a two-dimensional image plane. Image acquisition and processing are accomplished with entirely conventional two-dimensional Fourier transform magnetic resonance imaging techniques. When imaged at 0.6 tesla, vessels 1 to 2 millimeters in diameter are routinely detected in a 50-centimeter field of view with data acquisition times less than 15 minutes. Studies of normal and pathologic anatomy are illustrated in human subjects.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.4059917</identifier><identifier>PMID: 4059917</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>Angiography ; Angiography - instrumentation ; Arteriosclerosis - diagnosis ; Biological and medical sciences ; Blood ; Diastole ; Flow velocity ; Humans ; Image contrast ; Imaging ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Spectroscopy ; Medical imaging equipment ; Medical sciences ; Miscellaneous. Technology ; Phase contrast imaging ; Phase shift ; Protons ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Radiology ; Systole</subject><ispartof>Science (American Association for the Advancement of Science), 1985-11, Vol.230 (4728), p.946-948</ispartof><rights>Copyright 1985 The American Association for the Advancement of Science</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-43a8b88f9822ac6004856b7b837e957185b90dceca1eb9aac1ac9c056241381b3</citedby><cites>FETCH-LOGICAL-c408t-43a8b88f9822ac6004856b7b837e957185b90dceca1eb9aac1ac9c056241381b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1696008$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1696008$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8525493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/4059917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wedeen, Van J.</creatorcontrib><creatorcontrib>Meuli, Reto A.</creatorcontrib><creatorcontrib>Edelman, Robert R.</creatorcontrib><creatorcontrib>Geller, Stuart C.</creatorcontrib><creatorcontrib>Frank, Lawrence R.</creatorcontrib><creatorcontrib>Brady, Thomas J.</creatorcontrib><creatorcontrib>Rosen, Bruce R.</creatorcontrib><title>Projective Imaging of Pulsatile Flow with Magnetic Resonance</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Noninvasive angiography with magnetic resonance is demonstrated. Signal arising in all structures except vessels that carry pulsatile flow is eliminated by means of velocity-dependent phase contrast, electrocardiographic gating, and image subtraction. Background structures become in effect transparent, enabling the three-dimensional vascular tree to be imaged by projection to a two-dimensional image plane. Image acquisition and processing are accomplished with entirely conventional two-dimensional Fourier transform magnetic resonance imaging techniques. When imaged at 0.6 tesla, vessels 1 to 2 millimeters in diameter are routinely detected in a 50-centimeter field of view with data acquisition times less than 15 minutes. Studies of normal and pathologic anatomy are illustrated in human subjects.</description><subject>Angiography</subject><subject>Angiography - instrumentation</subject><subject>Arteriosclerosis - diagnosis</subject><subject>Biological and medical sciences</subject><subject>Blood</subject><subject>Diastole</subject><subject>Flow velocity</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Imaging</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical imaging equipment</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Phase contrast imaging</subject><subject>Phase shift</subject><subject>Protons</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Radiology</subject><subject>Systole</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAQhoMoun6cvSj0IF6kOmmaNgEvy-IXKIroOaRxWrNkG22yfvx7I1v0NIf3mXmHh5B9CqeUFtVZMBZ7g6clcClpvUYmFCTPZQFsnUwAWJULqPkW2Q5hDpAyyTbJ5ohPyPnD4Odoov3A7GahO9t3mW-zh6ULOlqH2aXzn9mnja_Zne56jNZkjxh8r1PrLtlotQu4N84d8nx58TS7zm_vr25m09vclCBiXjItGiFaKYpCmwqgFLxq6kawGiWvqeCNhBeDRlNspNaGaiMN8KooKRO0YTvkeHX3bfDvSwxRLWww6Jzu0S-DqquSQ8GrBJ6swE47VLY3vo_4FY13DjtU6anZvZqWwABokeizFW0GH8KArXob7EIP34qC-rWrRrtq1JU2DsdHls0CX_74__xozHUw2rVDsmTDHyZ4wUvJEnawwuYh-uG_tZJJjmA_IMuLNA</recordid><startdate>19851122</startdate><enddate>19851122</enddate><creator>Wedeen, Van J.</creator><creator>Meuli, Reto A.</creator><creator>Edelman, Robert R.</creator><creator>Geller, Stuart C.</creator><creator>Frank, Lawrence R.</creator><creator>Brady, Thomas J.</creator><creator>Rosen, Bruce R.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19851122</creationdate><title>Projective Imaging of Pulsatile Flow with Magnetic Resonance</title><author>Wedeen, Van J. ; Meuli, Reto A. ; Edelman, Robert R. ; Geller, Stuart C. ; Frank, Lawrence R. ; Brady, Thomas J. ; Rosen, Bruce R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-43a8b88f9822ac6004856b7b837e957185b90dceca1eb9aac1ac9c056241381b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Angiography</topic><topic>Angiography - instrumentation</topic><topic>Arteriosclerosis - diagnosis</topic><topic>Biological and medical sciences</topic><topic>Blood</topic><topic>Diastole</topic><topic>Flow velocity</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Imaging</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical imaging equipment</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Phase contrast imaging</topic><topic>Phase shift</topic><topic>Protons</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Radiology</topic><topic>Systole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wedeen, Van J.</creatorcontrib><creatorcontrib>Meuli, Reto A.</creatorcontrib><creatorcontrib>Edelman, Robert R.</creatorcontrib><creatorcontrib>Geller, Stuart C.</creatorcontrib><creatorcontrib>Frank, Lawrence R.</creatorcontrib><creatorcontrib>Brady, Thomas J.</creatorcontrib><creatorcontrib>Rosen, Bruce R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wedeen, Van J.</au><au>Meuli, Reto A.</au><au>Edelman, Robert R.</au><au>Geller, Stuart C.</au><au>Frank, Lawrence R.</au><au>Brady, Thomas J.</au><au>Rosen, Bruce R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective Imaging of Pulsatile Flow with Magnetic Resonance</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1985-11-22</date><risdate>1985</risdate><volume>230</volume><issue>4728</issue><spage>946</spage><epage>948</epage><pages>946-948</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Noninvasive angiography with magnetic resonance is demonstrated. Signal arising in all structures except vessels that carry pulsatile flow is eliminated by means of velocity-dependent phase contrast, electrocardiographic gating, and image subtraction. Background structures become in effect transparent, enabling the three-dimensional vascular tree to be imaged by projection to a two-dimensional image plane. Image acquisition and processing are accomplished with entirely conventional two-dimensional Fourier transform magnetic resonance imaging techniques. When imaged at 0.6 tesla, vessels 1 to 2 millimeters in diameter are routinely detected in a 50-centimeter field of view with data acquisition times less than 15 minutes. Studies of normal and pathologic anatomy are illustrated in human subjects.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>4059917</pmid><doi>10.1126/science.4059917</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1985-11, Vol.230 (4728), p.946-948 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_76450256 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Angiography Angiography - instrumentation Arteriosclerosis - diagnosis Biological and medical sciences Blood Diastole Flow velocity Humans Image contrast Imaging Investigative techniques, diagnostic techniques (general aspects) Magnetic resonance Magnetic resonance imaging Magnetic Resonance Spectroscopy Medical imaging equipment Medical sciences Miscellaneous. Technology Phase contrast imaging Phase shift Protons Radiodiagnosis. Nmr imagery. Nmr spectrometry Radiology Systole |
title | Projective Imaging of Pulsatile Flow with Magnetic Resonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20Imaging%20of%20Pulsatile%20Flow%20with%20Magnetic%20Resonance&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wedeen,%20Van%20J.&rft.date=1985-11-22&rft.volume=230&rft.issue=4728&rft.spage=946&rft.epage=948&rft.pages=946-948&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.4059917&rft_dat=%3Cgale_proqu%3EA4030012%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76450256&rft_id=info:pmid/4059917&rft_galeid=A4030012&rft_jstor_id=1696008&rfr_iscdi=true |