Evidence that random and imprinted Xist expression is controlled by preemptive methylation
The mouse Xist gene is expressed exclusively from the inactive X chromosome and may control the initiation of X inactivation. We show that in somatic tissues the 5′ end of the silent Xist allele on the active X chromosome is fully methylated, while the expressed allele on the inactive X is completel...
Gespeichert in:
Veröffentlicht in: | Cell 1994-04, Vol.77 (1), p.41-51 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Cell |
container_volume | 77 |
creator | Norris, Dominic P. Patel, Dipika Kay, Graham F. Penny, Graeme D. Brockdorff, Neil Sheardown, Steven A. Rastan, Sohaila |
description | The mouse
Xist gene is expressed exclusively from the inactive X chromosome and may control the initiation of X inactivation. We show that in somatic tissues the 5′ end of the silent
Xist allele on the active X chromosome is fully methylated, while the expressed allele on the inactive X is completely unmethylated. In tissues that undergo imprinted paternal
Xist expression and imprinted X inactivation, the paternal
Xist allele is unmethylated, and the silent maternal allele is fully methylated. In the male germline, a developmentally regulated demethylation of
Xist occurs at the onset of meiosis and is retained in mature spermatozoa. This may be the cause of imprinted expression of the paternal
Xist allele. A role for methylation in the control of
Xist expression is further supported by the finding that in differentiating embryonic stem cells during the initiation of X inactivation, differential methylation of
Xist alleles precedes the onset of
Xist expression. |
doi_str_mv | 10.1016/0092-8674(94)90233-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76435890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>009286749490233X</els_id><sourcerecordid>76435890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-326539e6502b1744e4d5cf64770fcd7061b5de652eb18c8bc310b6a0ced9bed53</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo67j6DxRyENFDa6U7n5cFWdYPWPCiMHgJ6aSajfTHmGQG59-bZoY5KhSpw_tUUTwh5CWD9wyY_ABg2kZLxd8a_s5A23XN9hHZMDCq4Uy1j8nmgjwlz3L-BQBaCHFFrjQTUhi5IT_vDjHg7JGWB1docnNYJlpfGqddinPBQLcxF4p_dglzjstMY6Z-mUtaxrGm_ZHWBKddiQekE5aH4-hK5Z6TJ4MbM74492vy49Pd99svzf23z19vP943nktdmq6VojMoBbQ9U5wjD8IPkisFgw8KJOtFqHGLPdNe975j0EsHHoPpMYjumrw57d2l5fcec7FTzB7H0c247LNVkndCG_gvyKQGoxWrID-BPi05JxxsVTG5dLQM7OrermLtKtaaWqt7u61jr8779_2E4TJ0ll3z1-fcZe_Gocr2MV8wDhK00RW7OWFYpR0iJpt9XL8oxIS-2LDEf9_xFwfmoVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16809871</pqid></control><display><type>article</type><title>Evidence that random and imprinted Xist expression is controlled by preemptive methylation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Norris, Dominic P. ; Patel, Dipika ; Kay, Graham F. ; Penny, Graeme D. ; Brockdorff, Neil ; Sheardown, Steven A. ; Rastan, Sohaila</creator><creatorcontrib>Norris, Dominic P. ; Patel, Dipika ; Kay, Graham F. ; Penny, Graeme D. ; Brockdorff, Neil ; Sheardown, Steven A. ; Rastan, Sohaila</creatorcontrib><description>The mouse
Xist gene is expressed exclusively from the inactive X chromosome and may control the initiation of X inactivation. We show that in somatic tissues the 5′ end of the silent
Xist allele on the active X chromosome is fully methylated, while the expressed allele on the inactive X is completely unmethylated. In tissues that undergo imprinted paternal
Xist expression and imprinted X inactivation, the paternal
Xist allele is unmethylated, and the silent maternal allele is fully methylated. In the male germline, a developmentally regulated demethylation of
Xist occurs at the onset of meiosis and is retained in mature spermatozoa. This may be the cause of imprinted expression of the paternal
Xist allele. A role for methylation in the control of
Xist expression is further supported by the finding that in differentiating embryonic stem cells during the initiation of X inactivation, differential methylation of
Xist alleles precedes the onset of
Xist expression.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/0092-8674(94)90233-X</identifier><identifier>PMID: 8156596</identifier><identifier>CODEN: CELLB5</identifier><language>eng</language><publisher>Cambridge, MA: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Cell Differentiation ; Dosage Compensation, Genetic ; Female ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation ; Humans ; Imprinting (Psychology) ; Male ; Meiosis ; Methylation ; Mice ; Mice, Inbred Strains ; Molecular and cellular biology ; Molecular genetics ; RNA, Long Noncoding ; RNA, Untranslated ; Spermatozoa - metabolism ; Transcription Factors - genetics ; X Chromosome - metabolism</subject><ispartof>Cell, 1994-04, Vol.77 (1), p.41-51</ispartof><rights>1994</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-326539e6502b1744e4d5cf64770fcd7061b5de652eb18c8bc310b6a0ced9bed53</citedby><cites>FETCH-LOGICAL-c468t-326539e6502b1744e4d5cf64770fcd7061b5de652eb18c8bc310b6a0ced9bed53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0092-8674(94)90233-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4060898$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8156596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norris, Dominic P.</creatorcontrib><creatorcontrib>Patel, Dipika</creatorcontrib><creatorcontrib>Kay, Graham F.</creatorcontrib><creatorcontrib>Penny, Graeme D.</creatorcontrib><creatorcontrib>Brockdorff, Neil</creatorcontrib><creatorcontrib>Sheardown, Steven A.</creatorcontrib><creatorcontrib>Rastan, Sohaila</creatorcontrib><title>Evidence that random and imprinted Xist expression is controlled by preemptive methylation</title><title>Cell</title><addtitle>Cell</addtitle><description>The mouse
Xist gene is expressed exclusively from the inactive X chromosome and may control the initiation of X inactivation. We show that in somatic tissues the 5′ end of the silent
Xist allele on the active X chromosome is fully methylated, while the expressed allele on the inactive X is completely unmethylated. In tissues that undergo imprinted paternal
Xist expression and imprinted X inactivation, the paternal
Xist allele is unmethylated, and the silent maternal allele is fully methylated. In the male germline, a developmentally regulated demethylation of
Xist occurs at the onset of meiosis and is retained in mature spermatozoa. This may be the cause of imprinted expression of the paternal
Xist allele. A role for methylation in the control of
Xist expression is further supported by the finding that in differentiating embryonic stem cells during the initiation of X inactivation, differential methylation of
Xist alleles precedes the onset of
Xist expression.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Differentiation</subject><subject>Dosage Compensation, Genetic</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Imprinting (Psychology)</subject><subject>Male</subject><subject>Meiosis</subject><subject>Methylation</subject><subject>Mice</subject><subject>Mice, Inbred Strains</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>RNA, Long Noncoding</subject><subject>RNA, Untranslated</subject><subject>Spermatozoa - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>X Chromosome - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo67j6DxRyENFDa6U7n5cFWdYPWPCiMHgJ6aSajfTHmGQG59-bZoY5KhSpw_tUUTwh5CWD9wyY_ABg2kZLxd8a_s5A23XN9hHZMDCq4Uy1j8nmgjwlz3L-BQBaCHFFrjQTUhi5IT_vDjHg7JGWB1docnNYJlpfGqddinPBQLcxF4p_dglzjstMY6Z-mUtaxrGm_ZHWBKddiQekE5aH4-hK5Z6TJ4MbM74492vy49Pd99svzf23z19vP943nktdmq6VojMoBbQ9U5wjD8IPkisFgw8KJOtFqHGLPdNe975j0EsHHoPpMYjumrw57d2l5fcec7FTzB7H0c247LNVkndCG_gvyKQGoxWrID-BPi05JxxsVTG5dLQM7OrermLtKtaaWqt7u61jr8779_2E4TJ0ll3z1-fcZe_Gocr2MV8wDhK00RW7OWFYpR0iJpt9XL8oxIS-2LDEf9_xFwfmoVQ</recordid><startdate>19940408</startdate><enddate>19940408</enddate><creator>Norris, Dominic P.</creator><creator>Patel, Dipika</creator><creator>Kay, Graham F.</creator><creator>Penny, Graeme D.</creator><creator>Brockdorff, Neil</creator><creator>Sheardown, Steven A.</creator><creator>Rastan, Sohaila</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19940408</creationdate><title>Evidence that random and imprinted Xist expression is controlled by preemptive methylation</title><author>Norris, Dominic P. ; Patel, Dipika ; Kay, Graham F. ; Penny, Graeme D. ; Brockdorff, Neil ; Sheardown, Steven A. ; Rastan, Sohaila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-326539e6502b1744e4d5cf64770fcd7061b5de652eb18c8bc310b6a0ced9bed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Differentiation</topic><topic>Dosage Compensation, Genetic</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Imprinting (Psychology)</topic><topic>Male</topic><topic>Meiosis</topic><topic>Methylation</topic><topic>Mice</topic><topic>Mice, Inbred Strains</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>RNA, Long Noncoding</topic><topic>RNA, Untranslated</topic><topic>Spermatozoa - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>X Chromosome - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norris, Dominic P.</creatorcontrib><creatorcontrib>Patel, Dipika</creatorcontrib><creatorcontrib>Kay, Graham F.</creatorcontrib><creatorcontrib>Penny, Graeme D.</creatorcontrib><creatorcontrib>Brockdorff, Neil</creatorcontrib><creatorcontrib>Sheardown, Steven A.</creatorcontrib><creatorcontrib>Rastan, Sohaila</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norris, Dominic P.</au><au>Patel, Dipika</au><au>Kay, Graham F.</au><au>Penny, Graeme D.</au><au>Brockdorff, Neil</au><au>Sheardown, Steven A.</au><au>Rastan, Sohaila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence that random and imprinted Xist expression is controlled by preemptive methylation</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>1994-04-08</date><risdate>1994</risdate><volume>77</volume><issue>1</issue><spage>41</spage><epage>51</epage><pages>41-51</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><coden>CELLB5</coden><abstract>The mouse
Xist gene is expressed exclusively from the inactive X chromosome and may control the initiation of X inactivation. We show that in somatic tissues the 5′ end of the silent
Xist allele on the active X chromosome is fully methylated, while the expressed allele on the inactive X is completely unmethylated. In tissues that undergo imprinted paternal
Xist expression and imprinted X inactivation, the paternal
Xist allele is unmethylated, and the silent maternal allele is fully methylated. In the male germline, a developmentally regulated demethylation of
Xist occurs at the onset of meiosis and is retained in mature spermatozoa. This may be the cause of imprinted expression of the paternal
Xist allele. A role for methylation in the control of
Xist expression is further supported by the finding that in differentiating embryonic stem cells during the initiation of X inactivation, differential methylation of
Xist alleles precedes the onset of
Xist expression.</abstract><cop>Cambridge, MA</cop><pub>Elsevier Inc</pub><pmid>8156596</pmid><doi>10.1016/0092-8674(94)90233-X</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 1994-04, Vol.77 (1), p.41-51 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_76435890 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Biological and medical sciences Cell Differentiation Dosage Compensation, Genetic Female Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation Humans Imprinting (Psychology) Male Meiosis Methylation Mice Mice, Inbred Strains Molecular and cellular biology Molecular genetics RNA, Long Noncoding RNA, Untranslated Spermatozoa - metabolism Transcription Factors - genetics X Chromosome - metabolism |
title | Evidence that random and imprinted Xist expression is controlled by preemptive methylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20that%20random%20and%20imprinted%20Xist%20expression%20is%20controlled%20by%20preemptive%20methylation&rft.jtitle=Cell&rft.au=Norris,%20Dominic%20P.&rft.date=1994-04-08&rft.volume=77&rft.issue=1&rft.spage=41&rft.epage=51&rft.pages=41-51&rft.issn=0092-8674&rft.eissn=1097-4172&rft.coden=CELLB5&rft_id=info:doi/10.1016/0092-8674(94)90233-X&rft_dat=%3Cproquest_cross%3E76435890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16809871&rft_id=info:pmid/8156596&rft_els_id=009286749490233X&rfr_iscdi=true |