Artifacts in computational optical-sectioning microscopy

We tested the most complete optical model available for computational optical-sectioning microscopy and obtained four main results. First, we observed good agreement between experimental and theoretical point-spread functions (PSF's) under a variety of imaging conditions. Second, using these PS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics and image science Optics and image science, 1994-03, Vol.11 (3), p.1056-1067
Hauptverfasser: McNally, J G, Preza, C, Conchello, J A, Thomas, Jr, L J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1067
container_issue 3
container_start_page 1056
container_title Journal of the Optical Society of America. A, Optics and image science
container_volume 11
creator McNally, J G
Preza, C
Conchello, J A
Thomas, Jr, L J
description We tested the most complete optical model available for computational optical-sectioning microscopy and obtained four main results. First, we observed good agreement between experimental and theoretical point-spread functions (PSF's) under a variety of imaging conditions. Second, using these PSF's, we found that a linear restoration method yielded reconstructed images of a well-defined phantom object (a 10-microns-diameter fluorescent bead) that closely resembled the theoretically determined, best-possible linear reconstruction of the object. Third, this best linear reconstruction suffered from a (to our knowledge) previously undescribed artifactual axial elongation whose principal cause was not increased axial blur but rather the conical shape of the null space intrinsic to nonconfocal three-dimensional (3D) microscopy. Fourth, when 10-microns phantom beads were embedded at different depths in a transparent medium, reconstructed bead images were progressively degraded with depth unless they were reconstructed with use of a PSF determined at the bead's depth. We conclude that (1) the optical model for optical sectioning is reasonably accurate; (2) if PSF shift variance cannot be avoided by adjustment of the optics, then reconstruction methods must be modified to account for this effect; and (3) alternative microscopical or nonlinear algorithmic approaches are required for overcoming artifacts imposed by the missing cone of frequencies that is intrinsic to nonconfocal 3D microscopy.
doi_str_mv 10.1364/JOSAA.11.001056
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_76424451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76424451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-87de11de54706032c36afee78c1f6a4ee1ea3195278e4c52e4db6ca1c4b455543</originalsourceid><addsrcrecordid>eNo9kEtPwzAMgCMEGjA4c0KqOHDrFrd57VhNPDVpB-AcZakLQW1TmvSwf09HJ0627M-W_RFyA3QBuWDL1-1bUSwAFpQC5eKEXADPaKp4np2OOVUslTxbnZPLEL4ppUwoOSMzBYyPvQuiij66ytgYEtcm1jfdEE10vjV14rvorKnTgPZQce1n0jjb-2B9t78iZ5WpA14f45x8PD68r5_TzfbpZV1sUpvDKqZKlghQImeSCppnNhemQpTKQiUMQwQ0I8gzqZBZniErd8IasGzHOOcsn5O7aa8P0elgXUT7ZX3bjkdpISlbcTFC9xPU9f5nwBB144LFujYt-iFoKVjGGIcRXE7g4Y3QY6W73jWm32ug-iBU_wnVAHoSOk7cHlcPuwbLf_5oMP8FhRRwlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76424451</pqid></control><display><type>article</type><title>Artifacts in computational optical-sectioning microscopy</title><source>MEDLINE</source><source>Optica Publishing Group Journals</source><creator>McNally, J G ; Preza, C ; Conchello, J A ; Thomas, Jr, L J</creator><creatorcontrib>McNally, J G ; Preza, C ; Conchello, J A ; Thomas, Jr, L J</creatorcontrib><description>We tested the most complete optical model available for computational optical-sectioning microscopy and obtained four main results. First, we observed good agreement between experimental and theoretical point-spread functions (PSF's) under a variety of imaging conditions. Second, using these PSF's, we found that a linear restoration method yielded reconstructed images of a well-defined phantom object (a 10-microns-diameter fluorescent bead) that closely resembled the theoretically determined, best-possible linear reconstruction of the object. Third, this best linear reconstruction suffered from a (to our knowledge) previously undescribed artifactual axial elongation whose principal cause was not increased axial blur but rather the conical shape of the null space intrinsic to nonconfocal three-dimensional (3D) microscopy. Fourth, when 10-microns phantom beads were embedded at different depths in a transparent medium, reconstructed bead images were progressively degraded with depth unless they were reconstructed with use of a PSF determined at the bead's depth. We conclude that (1) the optical model for optical sectioning is reasonably accurate; (2) if PSF shift variance cannot be avoided by adjustment of the optics, then reconstruction methods must be modified to account for this effect; and (3) alternative microscopical or nonlinear algorithmic approaches are required for overcoming artifacts imposed by the missing cone of frequencies that is intrinsic to nonconfocal 3D microscopy.</description><identifier>ISSN: 1084-7529</identifier><identifier>ISSN: 0740-3232</identifier><identifier>EISSN: 1520-8532</identifier><identifier>EISSN: 2375-1169</identifier><identifier>DOI: 10.1364/JOSAA.11.001056</identifier><identifier>PMID: 8145084</identifier><language>eng</language><publisher>United States</publisher><subject>DESIGN ; Image Processing, Computer-Assisted ; MATHEMATICAL MODELS ; MICROSCOPES ; MICROSCOPY ; Microscopy, Fluorescence - methods ; Microspheres ; Models, Structural ; OPTICAL MICROSCOPES ; OPTICAL MICROSCOPY ; OPTICAL SYSTEMS ; OTHER INSTRUMENTATION ; RESOLUTION 440600 -- Optical Instrumentation-- (1990-) ; SPATIAL RESOLUTION</subject><ispartof>Journal of the Optical Society of America. A, Optics and image science, 1994-03, Vol.11 (3), p.1056-1067</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-87de11de54706032c36afee78c1f6a4ee1ea3195278e4c52e4db6ca1c4b455543</citedby><cites>FETCH-LOGICAL-c319t-87de11de54706032c36afee78c1f6a4ee1ea3195278e4c52e4db6ca1c4b455543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8145084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6704956$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McNally, J G</creatorcontrib><creatorcontrib>Preza, C</creatorcontrib><creatorcontrib>Conchello, J A</creatorcontrib><creatorcontrib>Thomas, Jr, L J</creatorcontrib><title>Artifacts in computational optical-sectioning microscopy</title><title>Journal of the Optical Society of America. A, Optics and image science</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>We tested the most complete optical model available for computational optical-sectioning microscopy and obtained four main results. First, we observed good agreement between experimental and theoretical point-spread functions (PSF's) under a variety of imaging conditions. Second, using these PSF's, we found that a linear restoration method yielded reconstructed images of a well-defined phantom object (a 10-microns-diameter fluorescent bead) that closely resembled the theoretically determined, best-possible linear reconstruction of the object. Third, this best linear reconstruction suffered from a (to our knowledge) previously undescribed artifactual axial elongation whose principal cause was not increased axial blur but rather the conical shape of the null space intrinsic to nonconfocal three-dimensional (3D) microscopy. Fourth, when 10-microns phantom beads were embedded at different depths in a transparent medium, reconstructed bead images were progressively degraded with depth unless they were reconstructed with use of a PSF determined at the bead's depth. We conclude that (1) the optical model for optical sectioning is reasonably accurate; (2) if PSF shift variance cannot be avoided by adjustment of the optics, then reconstruction methods must be modified to account for this effect; and (3) alternative microscopical or nonlinear algorithmic approaches are required for overcoming artifacts imposed by the missing cone of frequencies that is intrinsic to nonconfocal 3D microscopy.</description><subject>DESIGN</subject><subject>Image Processing, Computer-Assisted</subject><subject>MATHEMATICAL MODELS</subject><subject>MICROSCOPES</subject><subject>MICROSCOPY</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Microspheres</subject><subject>Models, Structural</subject><subject>OPTICAL MICROSCOPES</subject><subject>OPTICAL MICROSCOPY</subject><subject>OPTICAL SYSTEMS</subject><subject>OTHER INSTRUMENTATION</subject><subject>RESOLUTION 440600 -- Optical Instrumentation-- (1990-)</subject><subject>SPATIAL RESOLUTION</subject><issn>1084-7529</issn><issn>0740-3232</issn><issn>1520-8532</issn><issn>2375-1169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPwzAMgCMEGjA4c0KqOHDrFrd57VhNPDVpB-AcZakLQW1TmvSwf09HJ0627M-W_RFyA3QBuWDL1-1bUSwAFpQC5eKEXADPaKp4np2OOVUslTxbnZPLEL4ppUwoOSMzBYyPvQuiij66ytgYEtcm1jfdEE10vjV14rvorKnTgPZQce1n0jjb-2B9t78iZ5WpA14f45x8PD68r5_TzfbpZV1sUpvDKqZKlghQImeSCppnNhemQpTKQiUMQwQ0I8gzqZBZniErd8IasGzHOOcsn5O7aa8P0elgXUT7ZX3bjkdpISlbcTFC9xPU9f5nwBB144LFujYt-iFoKVjGGIcRXE7g4Y3QY6W73jWm32ug-iBU_wnVAHoSOk7cHlcPuwbLf_5oMP8FhRRwlg</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>McNally, J G</creator><creator>Preza, C</creator><creator>Conchello, J A</creator><creator>Thomas, Jr, L J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19940301</creationdate><title>Artifacts in computational optical-sectioning microscopy</title><author>McNally, J G ; Preza, C ; Conchello, J A ; Thomas, Jr, L J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-87de11de54706032c36afee78c1f6a4ee1ea3195278e4c52e4db6ca1c4b455543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>DESIGN</topic><topic>Image Processing, Computer-Assisted</topic><topic>MATHEMATICAL MODELS</topic><topic>MICROSCOPES</topic><topic>MICROSCOPY</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Microspheres</topic><topic>Models, Structural</topic><topic>OPTICAL MICROSCOPES</topic><topic>OPTICAL MICROSCOPY</topic><topic>OPTICAL SYSTEMS</topic><topic>OTHER INSTRUMENTATION</topic><topic>RESOLUTION 440600 -- Optical Instrumentation-- (1990-)</topic><topic>SPATIAL RESOLUTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNally, J G</creatorcontrib><creatorcontrib>Preza, C</creatorcontrib><creatorcontrib>Conchello, J A</creatorcontrib><creatorcontrib>Thomas, Jr, L J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Optical Society of America. A, Optics and image science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNally, J G</au><au>Preza, C</au><au>Conchello, J A</au><au>Thomas, Jr, L J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artifacts in computational optical-sectioning microscopy</atitle><jtitle>Journal of the Optical Society of America. A, Optics and image science</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>1994-03-01</date><risdate>1994</risdate><volume>11</volume><issue>3</issue><spage>1056</spage><epage>1067</epage><pages>1056-1067</pages><issn>1084-7529</issn><issn>0740-3232</issn><eissn>1520-8532</eissn><eissn>2375-1169</eissn><abstract>We tested the most complete optical model available for computational optical-sectioning microscopy and obtained four main results. First, we observed good agreement between experimental and theoretical point-spread functions (PSF's) under a variety of imaging conditions. Second, using these PSF's, we found that a linear restoration method yielded reconstructed images of a well-defined phantom object (a 10-microns-diameter fluorescent bead) that closely resembled the theoretically determined, best-possible linear reconstruction of the object. Third, this best linear reconstruction suffered from a (to our knowledge) previously undescribed artifactual axial elongation whose principal cause was not increased axial blur but rather the conical shape of the null space intrinsic to nonconfocal three-dimensional (3D) microscopy. Fourth, when 10-microns phantom beads were embedded at different depths in a transparent medium, reconstructed bead images were progressively degraded with depth unless they were reconstructed with use of a PSF determined at the bead's depth. We conclude that (1) the optical model for optical sectioning is reasonably accurate; (2) if PSF shift variance cannot be avoided by adjustment of the optics, then reconstruction methods must be modified to account for this effect; and (3) alternative microscopical or nonlinear algorithmic approaches are required for overcoming artifacts imposed by the missing cone of frequencies that is intrinsic to nonconfocal 3D microscopy.</abstract><cop>United States</cop><pmid>8145084</pmid><doi>10.1364/JOSAA.11.001056</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics and image science, 1994-03, Vol.11 (3), p.1056-1067
issn 1084-7529
0740-3232
1520-8532
2375-1169
language eng
recordid cdi_proquest_miscellaneous_76424451
source MEDLINE; Optica Publishing Group Journals
subjects DESIGN
Image Processing, Computer-Assisted
MATHEMATICAL MODELS
MICROSCOPES
MICROSCOPY
Microscopy, Fluorescence - methods
Microspheres
Models, Structural
OPTICAL MICROSCOPES
OPTICAL MICROSCOPY
OPTICAL SYSTEMS
OTHER INSTRUMENTATION
RESOLUTION 440600 -- Optical Instrumentation-- (1990-)
SPATIAL RESOLUTION
title Artifacts in computational optical-sectioning microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artifacts%20in%20computational%20optical-sectioning%20microscopy&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics%20and%20image%20science&rft.au=McNally,%20J%20G&rft.date=1994-03-01&rft.volume=11&rft.issue=3&rft.spage=1056&rft.epage=1067&rft.pages=1056-1067&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.11.001056&rft_dat=%3Cproquest_osti_%3E76424451%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76424451&rft_id=info:pmid/8145084&rfr_iscdi=true